首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The holozoic dinoflagellate, Gymnodinium fungiforme Anissimova, has been observed in both asexually and sexually reproducing cultures. Asexual reproduction is characterized by zoosporangium formation and subsequent new cell release. Sexuality is gametic, and planozygotes and hypnozygotes are present. The life cycle is highly dependent on feeding, and in food-depleted cultures the swimming cells rapidly disappear. These are replaced with resistant long-term resting cysts. Despite its small size (8.5–19 μm), G. fungiforme can feed on prey as large as the ciliated protozoan, Condylostoma magnum Spiegel (600–1000 μm in length), or small injured metazoans, and has been cultured phagotrophically with the chlorophyte, Dunaliella salina Teodoresco as a food source. Eleven additional species of algae including 1 chlorophyte, 7 chrysophytes and 3 rhodophytes, however, were not suitable as food sources. Feeding is characterized by the formation of ‘dynamic aggregations’ of hundreds of dinoflagellates that attach to the surface of a prey organism by a peduncle. G. fungiforme ingests the cytoplasm or body fluids of its prey and a feeding aggregation can ingest a C. magnum in 20–30 minutes.  相似文献   

2.
The toxic, chain-forming dinoflagellate Gymnodinium catenatum Graham was cultured from vegetative cells and benthic resting cysts isolated from estuarine waters in Tasmania, Australia. Rapidly dividing, log phase cultures formed long chains of up to 64 cells whereas stationary phase cultures were composed primarily of single cells (23-41 pm long, 27-36 pm wide). Vegetative growth (mean doubling time 3-4 days) was optimal at temperatures from 14.5-20° C, salinities of 23-34% and light irradiances of 50-300 μE·m?2·s?1. The sexual life cycle of G. catenatum was easily induced in a nutrient-deficient medium, provided compatible opposite mating types were combined (heterothallism). Gamete fusion produced a large (59-73 μm long, 50-59 μm wide) biconical, posteriorly biflagellate planozygote (double longitudinal flagellum) which after several days lost one longitudinal flagellum and gradually became subspherical in shape. This older planozygote stage persisted for up to two weeks before encysting into a round, brown resting cyst (42-52 μm diam; hypnozygote) with microreticulate surface ornamentation. Resting cysts germinated after a dormancy period as short as two weeks under our culture conditions, resulting in a single, posteriorly biflagellate germling cell (planomeiocyte). This divided to form a chain of two cells, which subsequently re-established a vegetative population. Implications for the bloom dynamics of this toxic dinoflagellate, a causative organism of paralytic shellfish poisoning, are discussed.  相似文献   

3.
Free‐living, marine dinoflagellates are typified by a well‐defined, haplontic life cycle with relatively few stages. The most unusual departure from this life cycle is one reported for the heterotrophic dinoflagellate Pfiesteria piscicida Steidinger et Burkholder. This species is alleged to have at least 24 life cycle stages including amoebae and a chrysophyte‐like cyst form ( Burkholder et al. 1992 , Burkholder and Glasgow 1997a ) not previously known in free‐living marine dinoflagellates. Litaker et al. (2002) redescribed the life cycle of P. piscicida from single‐cell isolates and found only life cycle stages typical of free‐living marine dinoflagellates. The discrepancy between these observations and the life cycle reported in the literature prompted a rigorous study to resolve the life cycle of P. piscicida. Burkholder and Glasgow (2002) took exception to this study, arguing that Litaker et al. (2002) misunderstood the life cycle of P. piscicida and ignored recent publications. We present a rebuttal of their criticisms and suggest a simple way to resolve the discrepancies in the P. piscicida life cycle.  相似文献   

4.
Studies of the life cycle of a centric diatom, tentatively identified as Stephanodiscus neoastraea Håkansson & Hickel, showed that sexual reproduction occurred every year in a freshwater lake (Lough Neagh, Northern Ireland). Male and female gametes were produced in cells below 55% of the maximum diameter during a 3–4-week period in late summer, following the return of nitrate concentrations above 10 μM NO3-N. The frequency of sexual reproduction was linked to the cycle of diameter size reduction and regeneration. The times of largest decreases in cell diameter were during nutrient stress in summer and low light conditions in late autumn, rather than during the main spring growth period. So, environmental conditions (combined with the limited life-spans of individual cells) affected the rate of diameter reduction and, therefore, the length of the life cycle (3–4 years).  相似文献   

5.
A green-colored marine unicell has been grown in unialgal culture and its morphology, chloroplast fine structure, and chlorophyll composition investigated. The organism is typical of dinoflagellates in its shape, flagellation, nucleus, mitochondria, and trichocysts. It is similar to Gymnodinium but possesses fine body scales. Chloroplasts and two kinds of vesicles bounded by double membranes, but no organelles obviously identifiable as nuclei or mitochondria, are associated in ribosome-dense cytoplasm separated by a double membrane from the dinophycean cytoplasm. The chloroplasts are unlike any previously reported for dinoflagellates. Each is enclosed by an envelope consisting of a double membrane. Chloroplast lamellae consist of three appressed thylakoids. Interlamellar pyrenoids are present. Pigment analysis reveals chlorophylls a and b but not chlorophyll c. It seems likely that the organism is an undescribed dinoflagellate containing an endosymbiont with chlorophylls a and b and that the reduction of the endosymbiont nucleus and mitochondria has permitted a more initmate symbiosis.  相似文献   

6.
We studied how size variation in populations of Diatoma moniliformis Kütz. was influenced by environmental effects on the diatom life cycle. One of the two populations sampled monthly in the northern Baltic Sea grew under natural conditions; the other population was in a cooling water discharge channel of a nuclear power plant, where the temperature and flow rate of the water were artificially higher. The life cycle was synchronous at the natural site, with sexual reproduction occurring in the winter; most of the initial cells were found in March-April. After this, a reduction in cell size occurred, and the vegetative life cycle consisted of two parts. During the first part, cell volume decreased, whereas the surface area to volume ratio increased, and during the second part of the cycle, both of these parameters decreased. No direct evidence was found for the existence of a supra-annual life cycle in D. moniliformis, as convincing modes fm large cells were lacking in the size-frequency distributions. It was concluded from extrapolations of the data that the natural life cycle of D. moniliformis probably lasts 2 or 3 years. The changes in cell proportions during the life cycle fit well with annual growth cycles of D. moniliformis at the natural site (i.e. the cells had high surface area to volume ratios during the period of optimal growth in late spring [May-June]). At the site affected by cooling water discharge, the synchronization of the natural life cycle was disrupted, but some seasonal size variation did occur. Under natural conditions, auxosporulation is probably triggered by a combination of small cell size, low water temperature (0–3° C), and rapidly increasing light intensity or daylength in late winter to early spring. When these conditions were not met (e.g. at the heated site, the required low temperature was absent), auxosporulation did not occur simultaneously. This paper also presents scanning electron photomicrographs showing the typical shape and fine structure of the initial cell of D. moniliformis. These cells are semispherical in cross section, possess a pronounced curvature along the longitudinal axis, and are bent in the perualvar plane.  相似文献   

7.
A new species, Ostreopsis labens Faust et Morton sp. nov., is described from three marine habitats: lagoonal water and lagoonal sand from the barrier reef of Belize, and associated with macroalgae from coral reef habitats of Oshigaki and Iriomote Islands, Japan. Dimensions of Ostreopsis labens cells are 60–86 μm long, 70–80 μm wide, and 81–110 μm in dorsoventral depth. Cells are broadly ovoid, anterioposteriorly compressed bearing a spherical nucleus and many chloroplasts. The epitheca is convex and composed of three apical plates, seven precingular plates, and an apical pore plate. The cingulum is composed of six plates. The hypotheca is constructed of five postcingular plates, one posterior intercalary, and two antapical plates. The sulcus is small, recessed, and hidden and exhibits a ventral pore and a ridged, curved plate. The thecal arrangement of O. labens is Po, 3′, 7″ 6C, 6S(?), Vp, Rp, 5″, 1p, 2″. Only one sulcal list is present. The thecal plates have a smooth surface with distinct round pores. The intercalary band between the thecal plates is smooth. A row of marginal pores line the lipped cingulum. Ostreopsis species are anteroposteriorly flattened, photosynthetic, benthic dinoflagellates that are more diverse in ecology than previously known. Ostreopsis labens is capable of living in three marine habitats: in the water column, in sand, and on macroalgal surfaces. It was most numerous in sand and less in lagoonal waters, and only a few cells were associated with macroalgae. Light and scanning electron microscopy studies revealed engulfed cells within O. labens, which indicates mixotrophic/phagotrophic behavior. A ventral opening situated in the cingulum of O. labens exhibits size variability; it may serve as an opening for engulfiing food particles because it varies in size. We propose that ingestion of prey by O. labens occurs through the ventral opening, the proposed feeding apparatus of this species, which is similar to the function of the peduncle-like structure of mixotrophic dinoflagellates. The behavior of O. labens appears similar to that previously described for Dinophysis species.  相似文献   

8.
9.
The newly described toxic dinoflagellate Pfiesteria piscicida is a polymorphic and multiphasic species with flagellated, amoeboid, and cyst stages. The species is structurally a heterotroph; however, the flagellated stages can have cleptochloroplasts in large food vacuoles and can temporarily function as mixotrophs. The flagellated stage has a typical mesokaryotic nucleus, and the theca is composed of four membranes, two of which are vesicular and contain thin plates arranged in a Kofoidian series of Po, cp, X, 4′, 1a, 5″, 6c, 4s, 5″′, and 2″″. The plate tabulation is unlike that of any other armored dinoflagellate. Nodules often demark the suture lines underneath the outer membrane, but fixation protocols can influence the detection of plates. Amoeboid benthic stages can be filose to lobose, are thecate, and have a reticulate or spiculate appearance. Amoeboid stages have a eukaryotic nuclear profile and are phagocytic. Cyst stages include a small spherical stage with a honeycomb, reticulate surface and possibly another stage that is elongate and oval to spherical with chrysophyte-like scales that can have long bracts. The species is placed in a new family, Pfiesteriaceae, and the order Dinamoebales is emended.  相似文献   

10.
The holococcolith Calyptrosphaera sphaeroidea Schiller was collected at Miyake‐jima Island, Japan and unialgal cultures established. Alternation of the holococcolith and heterococcolith phases was induced using new culture media (MNK, TR, and LO). Cells synchronized in the holococcolith phase were transferred into TR medium to induce a life cycle change. The heterococcolith phase, which has never been reported before, appeared after more than 40 days. The heterococcoliths were very small elliptical discs, about 0.5 μm wide and 1 μm long. Typical diploid‐type organic scales on the cell surface were observed. This phase was very stable in culture and was tolerant of unfavorable conditions. To reverse the life phase, cells in the heterococcolith phase were transferred into cold LO medium and exposed to low temperature (4°C) and low light (2 μmol photons·m?2·s?1) for 30 min before culturing at normal conditions (22.5°C and 20 μmol photons· m?2·s?1). The swimming behavior of the holococcolith cells seemed to be an indicator of the life cycle phase transition. This article reports for the first time a set of conditions that could control the transition of a coccolithophorid from one life phase to the other. Selected vitamins and trace metals induced the heterococcolith phase, whereas a slightly higher concentration of components in the basic medium along with concomitant stresses of light and temperature induced the holococcolith phase. Based on the results, we propose a hypothesis that the alternation of coccolithophorid life phases is regulated by changes between pelagic and coastal environments coupled with changes in seasonal conditions.  相似文献   

11.
Pseudo‐nitzschia delicatissima (Cleve) Heiden is a very common pennate planktonic diatom found in temperate marine waters, where it is often responsible for blooms. Recently, three distinct internal transcribed spacer types have been recorded during a P. delicatissima bloom in the Gulf of Naples (Mediterranean Sea, Italy), which suggests the existence of cryptic diversity. We carried out mating experiments with clonal strains belonging to the most abundant internal transcribed spacer type. Pseudo‐nitzschia delicatissima is heterothallic and produces two functional anisogametes per gametangium. The elongated auxospore possesses a transverse and a longitudinal perizonium. The sexual phase was observed to occur over a wide size spectrum, spanning 19–80 μm and corresponding to almost the whole range of cell length observed for P. delicatissima. We also investigated cell morphology, valve ultrastructure and morphometry of parental, F1‐generation strains, and the progeny of crosses between parental and F1 strains. Although ultrastructural features match those described for P. delicatissima, variability in cell shape was recorded in the largest cells of the F1 generation as well as in valves with an abnormal arrangement of poroids. As many other diatoms, P. delicatissima undergoes size reduction over its life cycle, and cells of different size showed differences in growth rates and the amount of size reduction per cell cycle. Cells between 60 and 30 μm in length showed the fastest growth and the slowest rates of size reduction per generation. In culture, P. delicatissima cells can decrease to 8 μm in length; however, such small cells (≤30 μm) are not recorded in the sea, and this raises interesting questions about the factors that control their survival in the natural environment.  相似文献   

12.
A new thecate, phototrophic, marine, sand‐dwelling dinoflagellate, Thecadinium mucosum Hoppenrath et Taylor sp. nov., is described from a culture isolated from Boundary Bay, British Columbia, Canada. It was illustrated with LM as well as SEM and TEM, and its position in the phylogenetic tree of dinoflagellates was investigated using molecular methods. Cells are asymmetrical, oval, laterally flattened, and strongly pigmented, with the plate formula P 3′ 1a 6′′ 7/8c 5 s 6′′′ 2′′′′. Thecal plates are smooth with scattered pores, and there is a distinctive anterior intercalary plate that could be involved in mucus secretion. Thecadinium inclinatum Balech (=Sabulodinium inclinatum (Balech) Saunders et Dodge), a thecate, marine, sand‐dwelling species that has been previously confused with what we now call T. mucosum, was also examined and illustrated through LM and SEM. New information on T. inclinatum is provided, including its plate formula P 3′ 6′′ 7c ?s 5′′′ 1p 1′′′′; we consider T. inclinatum to be related to most other Thecadinium species and not to Sabulodinium. Molecular phylogenetic analyses based on the small subunit ribosomal gene of T. mucosum, T. kofoidii (the type species of the genus), and T. dragescoi weakly support earlier suspicions based on morphology that T. dragescoi is not a member of Thecadinium. Tabulational patterns of the species suggest a relationship to the genus Amphidiniopsis.  相似文献   

13.
Few members of the well‐studied marine phytoplankton taxa have such a complex and polymorphic life cycle as the genus Phaeocystis. However, despite the ecological and biogeochemical importance of Phaeocystis blooms, the life cycle of the major bloom‐forming species of this genus remains illusive and poorly resolved. At least six different life stages and up to 15 different functional components of the life cycle have been proposed. Our culture and field observations indicate that there is a previously unrecognized stage in the life cycle of P. antarctica G. Karst. This stage comprises nonmotile cells that range in size from ~4.2 to 9.8 μm in diameter and form aggregates in which interstitial spaces between cells are small or absent. The aggregates (hereafter called attached aggregates, AAs) adhere to available surfaces. In field samples, small AAs, surrounded by a colony skin, adopt an epiphytic lifestyle and adhere in most cases to setae or spines of diatoms. These AAs, either directly or via other life stages, produce the colonial life stage. Culture studies indicate that bloom‐forming, colonial stages release flagellates (microzoospores) that fuse and form AAs, which can proliferate on the bottom of culture vessels and can eventually reform free‐floating colonies. We propose that these AAs are a new stage in the life cycle of P. antarctica, which we believe to be the zygote, thus documenting sexual reproduction in this species for the first time.  相似文献   

14.
Amphidinium cryophilum sp. nov. was found in the fall of 1979 in a small pond near Madison, Wisconsin. During the ensuing winter, it became the dominant phytoplankter. Cell numbers remained high despite a thick layer of ice and snow. After the ice melted in the spring the organism disappeared from plankton samples. A successful culture of A. cryophilum was established only when isolates were incubated at 5–7° C. It is compared with two morphologically similar species, A. amphidinioides (Geitler) Schiller and Gymnodinium inversum Nygaard. Amphidinium cryophilum is distinguished from the former by its pigmentation (golden-yellow vs. blue-green), the location of the cingulum, and its lack of an eyespot. It differs from the latter in cell shape, the route of the sulcus and position of the nucleus.  相似文献   

15.
16.
A new genus of Pfiesteria‐like heterotrophic dinoflagellate, Luciella gen. nov., and two new species, Luciella masanensis sp. nov. and Luciella atlantis sp. nov., are described. These species commonly occur with other small (<20 μm) heterotrophic and mixotrophic dinoflagellates in estuaries from Florida to Maryland and the southern coast of Korea, suggesting a possible global distribution. An SEM analysis indicates that members of the genus Luciella have the enhanced Kofoidian plate formula of Po, cp, X, 4′, 2a, 6″, 6c, PC, 5+s, 5?, 0p, and 2″″. The two four‐sided anterior intercalary plates are diamond shaped. The genus Luciella differs from the other genera in the Pfiesteriaceae by a least one plate in the plate tabulation and in the configuration of the two anterior intercalary plates. An SSU rDNA phylogenetic analysis confirmed the genus as monophyletic and distinct from the other genera in the Pfiesteriaceae. The morphology of Luciella masanensis closely resembles Pfiesteria piscicida Steid. et J. M. Burkh. and other Pfiesteria‐like dinoflagellates in size and shape, making it easily misidentified using LM. Luciella atlantis, in contrast, has a more distinctive morphology. It can be distinguished from L. masanensis and other Pfiesteria‐like organisms by a larger cell size, a more conical‐shaped epitheca and hypotheca, larger rhombic‐shaped intercalary plates, and an asymmetrical hypotheca. The genus Luciella is assigned to the order Peridiniales and the family Pfiesteriaceae based on plate tabulation, plate pattern, general morphology, and phylogenetic analysis.  相似文献   

17.
A new marine benthic, sand‐dwelling Prorocentrum species from the temperate region of the Pacific coast of British Columbia, Canada, is described using LM and EM and molecular phylogenetic analyses. The cells have a broad oval shape, 40.0–55.0 μm long and 30.0–47.5 μm wide, and a wide U‐shaped periflagellar area on the right thecal plate. The left thecal plate consists of a straighter apical outline in the form of a raised ridge. Five to six delicate apical spines in the center of the periflagellar area are present. The nucleus is located in the posterior region of the cell, and a conspicuous pusule is located in the anterior region of the cell. The cells have golden‐brown chloroplasts with a compound, intrachloroplast pyrenoid that lacks a starch sheath. The thecal plates are smooth with round pores of two different sizes. The larger pores are arranged in a specific pattern of radial rows that are evenly spaced around the plate periphery and of irregular rows (or double rows) that form an incomplete “V” at the apical end of the plates. Large pores are absent in the center of the left and right thecal plates. The intercalary band is striated transversely and also has faint horizontal striations. Trichocysts and two types of mucocysts are present. The molecular phylogenetic position of Prorocentrum tsawwassenense sp. nov. was inferred using SSU rDNA sequences. This new species branched with high support in a Prorocentrum clade containing both benthic and planktonic species.  相似文献   

18.
A revision of the monoraphid pennate diatom genus Campyloneis Grunow was carried out based on LM and EM observations. The material examined originated from various herbarium collections and from extant epiphytic diatom communities on leaves of Posidonia spp. We also examined the generitype C. grevillei (Smith) Grunow and the fossil material of C. gheyselinchi Reinhold from which the author extracted the type. Our results clarified the fine structure of C. grevillei and C. gheyselinchi. Of the various varieties of C. grevillei, only the variety argus (Grunow) Cleve was retained. This differs from the nominate variety in the arrangement and shape of the areolae adjacent to the sternum of the araphid valve. The newly described taxon Campyloneis juliae De Stefano differs from all Campyloneis species in areolae ultrastructure and morphology of the valvocopulae. As for the fossil species C. gheyselinchi, the sternum valve areolae are similar to those of C. grevillei, but scarcity of frustules in the type material prohibited evaluation of its variability. For this reason we provisionally maintained its rank of species. The elaborate linking systems among the valvocopulae and valves in Campyloneis species appear to provide structural reinforcement against pressure from neighboring epiphytic diatoms and scouring of seagrass leaves.  相似文献   

19.
20.
When cyanobacteria acclimate to nitrogen deficiency, they degrade their large (3–5-MDa), light-harvesting complexes, the phycobilisomes. This massive, yet specific, intracellular degradation of the pigmented phycobiliproteins causes a color change of cyanobacterial cultures from blue-green to yellow-green, a process referred to as chlorosis or bleaching. Phycobilisome degradation is induced by expression of the nblA gene, which encodes a protein of ∼7 kDa. NblA most likely acts as an adaptor protein that guides a Clp protease to the phycobiliproteins, thereby initiating the degradation process. Most cyanobacteria and red algae possess just one nblA-homologous gene. As an exception, the widely used “model organism” Synechocystis sp. PCC6803 expresses two such genes, nblA16803 and nblA26803, both of whose products are required for phycobilisome degradation. Here, we demonstrate that the two NblA proteins heterodimerize in vitro and in vivo using pull-down assays and a Förster energy-transfer approach, respectively. We further show that the NblA proteins form a ternary complex with ClpC (the HSP100 chaperone partner of Clp proteases) and phycobiliproteins in vitro. This complex is susceptible to ATP-dependent degradation by a Clp protease, a finding that supports a proposed mechanism of the degradation process. Expression of the single nblA gene encoded by the genome of the N2-fixing, filamentous cyanobacterium Nostoc sp. PCC7120 in the nblA1/nblA2 mutant of Synechocystis sp. PCC6803 induced phycobilisome degradation, suggesting that the function of the NblA heterodimer of Synechocystis sp. PCC6803 is combined in the homodimeric protein of Nostoc sp. PCC7120.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号