首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serum and temporal gland secretions (TGS) were obtained from mature wild African (Loxodonta africana) and captive Asian elephants (Elephas maximus). Samples were obtained from five cows and eight bulls culled for management purposes in Kruger National Park, South Africa, and from four females and two males residing at the Washington Park Zoo, Portland, Oregon. Our purpose was to describe the levels of the androgens, testosterone (T), and dihydrotestosterone (DHT), and to correlate these observations with sex, species and behavioral status. Male-female differences in serum T were pronounced in the Asian species, whereas male and female concentrations overlapped in the African elephant serum. Serum T concentrations in African females were greater than in Asian females. Serum DHT reflected T levels, except that the striking elevation of testosterone in Asian bulls during musth was not paralleled by equal increases in DHT levels. A species difference observed among males was higher serum T levels in nonmusth Asian bulls (1.84-5.35 ng/ml) compared to the levels in African bulls (0.38-0.68 ng/ml), except for one dominant African bull (6.64 ng/ml). This single African value was still considerably lower than the serum T values of the Asian males during musth. These musth values were the highest serum androgen concentrations: T was between 19 and 40 ng/ml (average 26.10 ng/ml). The TSG values of T and DHT were much higher than serum levels except in the Asian female. T/DHT ratios in TGS were more similar than in serum. One dominant African bull had a T TGS value of 78 ng/ml, which was much higher than the rest of the African males or females, but considerably lower than as Asian bull in musth (547 ng/ml). It seems apparent that a change in androgen status as reflected in serum and TGS levels of T and DHT precedes or is concomitant with overt alteration in behavior in the Asian male. The temporal gland appears to actively concentrate androgens in both African males and females, but in the Asian male the gland secretes only during musth when the greatest concentration of both T and DHT were observed. The apparent difference in the degree of temporal gland secretory activity between the two species suggests a more specific communicative function within the Asian male.  相似文献   

2.
Reproductive complications for both male and female zoo-managed African elephants (Loxodonta africana) contribute to the rapidly declining population. In zoo-managed bull elephants, few studies have explored the potential physiological, physical, social, and environmental factors that influence bull fertility, particularly, androgen production. Testosterone is the essential steroid hormone for male sexual maturation and inadequate concentrations can be detrimental for spermatogenesis. Testosterone, fecal glucocorticoid metabolites, leptin, glucose, insulin, and triglycerides were analyzed from weekly fecal and blood serum samples taken over 6 months from six zoo-managed African elephant bulls (10–19 years of age). Testosterone levels were compared to endocrine factors, weekly social and environmental variables, daily musth signs, and body condition scores (BCS). The glucose-to-insulin ratio (G:I) was the only physiological biomarker found to be positively associated with testosterone. Predictive physical variables included Musth Score (+) and Moderate Exercise (+). Bulls with BCS signifying overweight (BCS 4) had lower testosterone (36.6 ± 1.6 ng/g fecal extraction [FE]) than bulls with healthy BCS 3; 51.2 ± 4.9 ng/g FE). Numerous social variables influenced testosterone concentrations, including Total Contact Day (+), Female Interaction Day (+), Indirect Contact Day (+), Indirect Contact Night (+) and Total No Contact (−). Both percentage of Time Outdoor and Time Mixed positively influenced testosterone, whereas testosterone decreased for percentage of Time Indoors. Each additional daily browse opportunity increased testosterone by approximately 7 ng/g FE. In managed care, the emphasis should be placed on optimizing these predictors of testosterone production to promote bull reproductive health.  相似文献   

3.
The occurrence of musth, a period of elevated levels of androgens and heightened sexual activity, has been well documented for the male Asian elephant (Elephas maximus). However, the relationship between androgen-dependent musth and adrenocortical function in this species is unclear. The current study is the first assessment of testicular and adrenocortical function in free-ranging male Asian elephants by measuring levels of testosterone (androgen) and cortisol (glucocorticoid – a physiological indicator of stress) metabolites in faeces. During musth, males expectedly showed significant elevation in faecal testosterone metabolite levels. Interestingly, glucocorticoid metabolite concentrations remained unchanged between musth and non-musth periods. This observation is contrary to that observed with wild and captive African elephant bulls and captive Asian bull elephants. Our results show that musth may not necessarily represent a stressful condition in free-ranging male Asian elephants.  相似文献   

4.
Musth in male African elephants, Loxodonta africana, is associated with increased aggressive behavior, continuous discharge of urine, copious secretions from the swollen temporal glands, and elevated androgen levels. During musth, bulls actively seek out and are preferred by estrous females although sexual activity is not restricted to the musth condition. The present study combines recently established methods of fecal hormone analysis with long-term observations on male-female associations as well as the presence and intensity of physical signals to provide a more detailed picture about the physical, physiological, and behavioral characteristics of different states of sexual activity in free-ranging African elephants. Based on quantitative shifts in individual bull association patterns, the presence of different physical signals, and significant differences in androgen levels, a total of three potential sub-categories for sexually active bulls could be established. The results demonstrate that elevations in androgen levels are only observed in sexually active animals showing temporal gland secretion and/or urine dribbling, but are not related to the age of the individual. Further, none of the sexually active states showed elevated glucocorticoid output indicating that musth does not represent an HPA-mediated stress condition. On the basis of these results, we suggest that the term "musth" should be exclusively used for the competitive state in sexually active male elephants and that the presence of urine dribbling should be the physical signal used for defining this state.  相似文献   

5.
Although musth in male African elephants (Loxodonta africana) is known to be associated with increased aggressiveness, urine dribbling (UD), temporal gland secretion (TGS), and elevated androgens, the temporal relationship between these changes has not been examined. Here, we describe the pattern of musth-related characteristics in 14 captive elephant bulls by combining long-term observations of physical and behavioral changes with physiological data on testicular and adrenal function. The length of musth periods was highly variable but according to our data set not related to age. Our data also confirm that musth is associated with elevated androgens and, in this respect, show that TGS and UD are downstream effects of this elevation, with TGS responding earlier and to lower androgen levels than UD. Because the majority of musth periods were associated with a decrease in glucocorticoid levels, our data also indicate that musth does not represent a physiological stress mediated by the hypothalamic-pituitary-adrenal axis. Furthermore, we demonstrate that the occurrence of musth is associated with increased aggression and that this is presumably androgen mediated because aggressive males had higher androgen levels. Collectively, the information generated contributes to a better understanding of what characterizes and initiates musth in captive African elephants and provides a basis for further studies designed to examine in more detail the factors regulating the intensity and duration of musth.  相似文献   

6.
Greater concentrations of androstenedione than testosterone were usually present during periods of non-musth in plasma collected weekly for various periods up to 2 years in 8 male Asian elephants (4-35 years of age). For the 6 males that exhibited musth the androstenedione/testosterone ratio shifted greatly in favour of testosterone. The severity of musth was assessed weekly using a scale of 1 to 5 for each of 8 behavioural traits including urine dribbling, temporal gland secretion and aggression. A significant correlation (P less than 0.05) was noted between plasma testosterone concentrations and the musth score value in 5 of 6 musth episodes. Brief shifts in the ratio of two androgens when testosterone predominated (n = 106) were seen during the non-musth period in 3 of the males studied continuously for 2 years. In 82% of these instances, stimuli of a sexual or aggressive nature had occurred in the preceding 48 h (chi 2, P less than 0.01). A heterologous bovine assay was used to measure LH values in plasma collected every 15 min for 12 h. Increases in testosterone concentrations followed pulsatile increases in plasma LH concentrations during 7 non-musth periods in 4 animals. Apart from pulse frequency, increases in the variables describing pulsatile LH secretion were seen in 2 strong musth and 2 mild musth episodes compared to non-musth values. A strong musth, however, was characterized by a much greater increase in pulsatile testosterone secretion than was a mild musth and which may be a function of the duration of musth.  相似文献   

7.
Musth has not been well documented in captive African elephants. A 37-year-old African bull elephant in the Kansas City Zoological Park was observed during periods of behavioral musth and non-musth. Androstenedione and luteinizing hormone (LH) concentrations in urine were measured by radioimmunoassay. Urinary androstenedione and LH levels were significantly higher in musth urine than in non-musth samples. A positive correlation (P > 0.001) existed between urinary LH and androstenedione concentrations. These results indicate that musth can occur in a zoo-maintained African elephant and that urinary androgen levels are elevated during musth, possibly as the result of LH stimulation of testicular steroidogenesis.  相似文献   

8.
The corpus luteum of African elephants produces high amounts of 5α-reduced progesterone metabolites (5α-pregnane-3,20-dione and 5-α-pregnane-3α-ol-20-one), whereas progesterone itself is quantitatively less important, and plasma levels of progesterone during the estrous cycle in elephants are considerably lower than those of other mammals. The objective of this study was to compare the concentration of progesterone in plasma of Asian and African elephants as determined by specific progesterone assays with those of total immunoreactive progestagens containing a 20-oxo-group (20-oxo-P). These metabolites were determined by an enzyme immunoassay using an antibody against 5-α-pregnane-3β-ol-20-one, 3HS:BSA. Plasma of non-pregnant Asian (n = 4) and African (n = 4) elephants was collected at weekly intervals for periods of 8–15 months and at random intervals during pregnancy in one Asian elephant. High-performance liquid chromatography separation of plasma samples of both species demonstrated that in the 20-oxo-P assay, 5α-pregnane-3,20-dione makes up ˜60% of the total immunoreactive material. The progesterone and 20-oxo-P values during the estrous cycle showed a parallel pattern and were significantly correlated (P < 0.001; Asian: r = 0.80; y = 3.76 × –0.10; African: r = 0.75; y = 2.66 × –0.08). Progesterone and 20-oxo-P values in Asian and African elephants were <0.15 ng/ml during the follicular phase (weeks –4 to 0) of the estrous cycle; progesterone values during the luteal phase (weeks 2–9) were 0.60 ± 0.03 and 0.53 ± 0.03 ng/ml, and the 20-oxo-P values were 2.19 ± 0.16 and 1.48 ± 0.12 ng/ml, respectively. The 20-oxo-P values of the pregnant animal, although slightly higher, were comparable to those of non-pregnant elephants during the luteal phase. Total immunoreactive 20-oxo-P values are about three times higher than those of progesterone during the luteal phase, and 5α-pregnane-3,20-dione is the major immunoreactive 20-oxo-P in the plasma of Asian and African elephants. Zoo Biol 16:403–413, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Serum prolactin was quantified in adult female Asian (Elephas maximus) and African (Loxodonta africana) elephants during various reproductive states and the profiles compared to that in a noncycling African elephant. In reproductively normal elephants, there was no effect of season, estrous cycle stage, or lactational status on quantitative or qualitative prolactin secretion (P > 0.05), nor where there any differences (P > 0.05) in overall prolactin concentrations between species. In pregnant elephants, prolactin concentrations remained at baseline for the first 4–6 months of gestation. Thereafter, concentrations during early pregnancy averaged ∼four-fold higher than those during the estrous cycle, increasing to ∼100-fold over baseline during mid- to late gestation in both species. In contrast to cycling elephants, prolactin concentrations in an African elephant exhibiting chronic anovulation (on the basis of an acyclic serum progesterone profile) and mild galactorrhea were consistently about five-fold higher (P < 0.05), suggesting she is hyperprolactinemic. Other endocrinological assesments confirmed the hypogonadal state of this female. Serum estradiol concentrations were consistently at or below detectable levels. Additionally, no preovulatory luteinizing hormone (LH) surges occurred in daily serum samples analyzed over a 12-month period. The pituitary was not totally refractory, however, and responded with a several-fold increase in serum LH concentration (peak, 3.07 ng/ml) over baseline (0.75 ng/ml) after i.v. injection of gonadotropin-releasing hormone. This study describes normal baseline serum prolactin values for Asian and African elephants and is the first to identify hyperprolactinemia as a possible cause of reproductive acyclicity and galactorrhea in an African elephant. Zoo Biol 16:149–159, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
A simple, rapid enzyme‐linked immunosorbent assay (ELISA) for the measurement of LH in plasma and serum of elephants (Loxodonta africana and Elephas maximus) has been developed, validated, and used for comparative studies. Purified elephant LH (eleLH) diluted in elephant plasma was used as standards (0.78–50 ng/ml). A monoclonal antibody against the β‐subunit of bovine LH (518B7) was used as the capture antibody. The second antibody (a polyclonal rabbit anti‐human LH antibody), conjugated to horseradish peroxidase, cleaved a substrate (tetramethyl benzidine), resulting in a color change. The total assay time was approximately 2½ hr, with incubations at room temperature. Sensitivity was found to be 1.56 ng/ml. Cross‐reactivities to elephant FSH and TSH were low: 0.9% and 0.15%, respectively. The accuracy of the assay was demonstrated by comparing the ELISA with a validated eleLH radioimmunoassay (RIA), progesterone data, and ultrasound observations. Blood samples from 18 Asian and African elephant cows were analyzed with the ELISA and RIA, and an additional 11 cows were used to describe endocrine parameters for LH and progesterone using only RIA. No difference was found in LH peak concentrations between the ELISA and RIA. The time from the progesterone decline to the first LH peak, and the time between the two peaks were similar between species. Asian cows had higher LH peaks than African cows. Ultrasound confirmed the time of ovulation occurring with the second LH peak. Three cows were inseminated and confirmed to be pregnant using this ELISA as a timing device. Instrumentation is not always required, as LH peaks approximating 3 ng/ml can be visually observed. In conclusion, this ELISA can be used as a field test to determine time of ovulation for artificial insemination (AI) or natural breeding of both species of elephants, and thus is an important tool for the preservation of captive populations worldwide. Zoo Biol 23:65–78, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

11.
Urine samples were obtained from free-ranging African elephants that were considered to be in and out of musth. Testosterone concentrations, measured by radioimmunoassay were significantly greater in males that were in or around the time of behavioural musth. This study supports a correlation between the observed behavioural characteristics of musth and urinary testosterone levels.  相似文献   

12.
Androgen measurements in urine and/or feces represent a potentially important tool for monitoring testicular endocrine function in the African elephant. To assess the feasibility of this approach, the aims of the present study were to: 1) examine the presence and relative abundance of immunoreactive testosterone (iT) and its 5α‐reduced 17‐oxometabolite epiandrosterone (iEA) in African elephant excreta, and 2) compare urine and fecal androgen profiles in animals of different ages and during the musth and non‐musth condition. Urine and fecal samples were collected over periods of up to 3 years from five bulls (ages 7–24 years) living in three mixed social groups. In parallel, indications of musth were recorded by keeper staff as an independent marker of male androgen status. Measurements of iT and iEA were carried out by enzymeimmunoassay (EIA) following methanolic extraction of hydrolyzed urine and lyophilized fecal powder. High‐pressure liquid chromatography (HPLC) of musth phase samples confirmed the presence of substantial quantities of testosterone (T) and epiandrosterone (EA) in both urine and feces. EA was predominant in feces, whereas T was more abundant in urine. In each male, the two androgen measures were significantly correlated (feces, r = 0.71–0.93, P < 0.0001; urine, r = 0.86–0.91, P < 0.0001), as were fecal and urinary concentrations of each of the two androgens measured (r = 0.35–0.77, P < 0.0001). Moreover, in the two oldest males that showed clear signs of musth, levels of iEA and iT were markedly elevated during musth compared to non‐musth periods (differences were significant for feces in both animals, but in urine only for one). Collectively, the data show that measurement of urinary and fecal androgens generates useful information on gonadal status in male African elephants, and as such should provide new opportunities to improve the management and welfare of bulls maintained in captivity, as well as to examine physiological correlates of reproductive function in free‐ranging animals. Zoo Biol 21:27–36, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

13.
The ovary of female elephants has multiple corpora lutea (CL) during the estrous cycle and gestation. The previous reports clearly demonstrated that inhibin was secreted from lutein cells as well as granulosa cells of antral follicles in cyclic Asian elephants. The aim of this study is to investigate the inhibin secretion during the pregnancy in African and Asian elephants. Two African elephants and two Asian elephants were subjected to this study. Circulating levels of immunoreactive (ir‐) inhibin and progesterone were measured by radioimmunoassay. Four pregnant periods of an African elephant and three pregnant periods of an Asian elephant were analyzed in this study. Circulating levels of ir‐inhibin started to increase at 1 or 2 week before the ovulation and reached the peak level 3 or 4 weeks earlier than progesterone during the estrous cycle in both African and Asian elephants. After last luteal phase, the serum levels of ir‐inhibin remained low throughout pregnancy in both an African and an Asian elephant. The mean levels of ir‐inhibin during the pregnancy were lower than the luteal phase in the estrous cycle despite high progesterone levels were maintained throughout the pregnancy. These results strongly suggest that CL secrete a large amount of progesterone but not inhibin during the pregnancy in elephants. Zoo Biol 31:511‐522, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
Testosterone is important in mediating investment in competing activities such as territoriality, parental care, and maintenance behavior. Most studies of testosterone function have focused on temperate species and less is known about the role of testosterone in territoriality or variation in mating systems of tropical species. Results of studies of tropical species with year‐round territoriality indicate that territorial aggression during the non‐breeding season is maintained with low levels of testosterone, and increased levels of testosterone in males during the breeding season may increase mating opportunities or aid in competition for mates. We studied seasonal variation in testosterone levels of male Red‐throated Ant‐tanagers (Habia fuscicauda), a socially monogamous species with year‐round territoriality and with high levels of extra‐pair matings (41% of young), to determine if testosterone levels increased during the breeding season. We captured males during the non‐breeding and breeding seasons and collected blood samples for hormone analysis. We found that mean testosterone concentrations were low during the non‐breeding season (0.18 ± 0.05 [SD] ng/ml, range = 0.11–0.31 ng/ml), and significantly higher during the breeding season (2.37 ± 2.47 ng/ml, range = 0.14–6.28 ng/ml). Testosterone levels of breeding males were not related to aggression levels as measured by attack rates toward a stuffed decoy or singing rates during simulated territorial intrusions. These results suggest that the higher testosterone levels of breeding male Red‐throated Ant‐tanagers may be important in an extra‐pair mating context, possibly in display behavior or mate attraction, but additional study is needed to clarify the role of testosterone during the breeding season.  相似文献   

15.
Blood was collected at intervals of 29 to 31 min for 5 hr from six Angus bulls (15 mo of age) unaccustomed to capture, restraint and jugular venipuncture (stress) to evaluate temporal changes in certain hormones. Concentrations of testosterone and luteinizing hormone (LH) but not prolactin were decreased significantly after the first hour. Testosterone in plasma decreased (P < .01) about 11-fold between 0 hr and 5 hr (9.9 ± 1.7 to .85 ± .16 ng/ml) as described by equation loge testosterone = loge 2.4649 ? .5266 hr (r = .83; P < .01). Concentrations of LH in plasma remained low after the first hour and those of prolactin were high at all times and varied significantly only among bulls (27 ± 6 to 84 ± 14 ng/ml). Testosterone but not LH was measured with equal repeatability among duplicate measurements either in whole blood or plasma but its average concentration in whole blood was 66% that of plasma. This study demonstrated that sequential collection of blood from bulls unaccustomed to capture and restraint cannot be used to evaluate normal temporal variations in concentrations of testosterone.  相似文献   

16.
Sixteen multiparous nonpregnant lactating Holstein cows (each weighing 662 ± 65 kg in 150.4 ±40 day of lactation) were confined to wooden metabolic cages with 12:12 h light:dark cycle during the experiment. The cows were divided into two sequences of eight cows each and exposed to electric and magnetic fields (EMF) in an exposure chamber. This chamber produced a vertical electric field of 10 kV/m and a uniform horizontal magnetic field of 30 μT at 60 Hz. One sequence was exposed for three estrous cycles of 24 to 27 days. During the first estrous cycle, the electric and magnetic fields were off; during the second estrous cycle, they were on; and during the third estrous cycle, they were off. The second sequence was also exposed for three 24 to 26 days estrous cycles, but the exposure to the fields was reversed (first estrous cycle, on; second estrous cycle, off; third estrous cycle, on). The length of each exposure period (21 to 27 days) varied according to the estrous cycle length. No differences were detected in plasma progesterone concentrations and area under the progesterone curve during estrous cycles between EMF nonexposed and exposed periods (2.28 ±0.17 and 2.25 ± 0.17; and 24.5 ± 1.9 vs. 26.4 ± 1.9 ng/ml, respectively). However, estrous cycle length, determined by the presence of a functional corpus luteum detected by concentrations of progesterone equal to or more than 1 ng/ml plasma, was shorter in nonexposed cows than when they were exposed to EMF (22.0 ± 0.9 vs. 25.3 ± 1.4 days). Bioelectromagnetics 19:438–443, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The levels of progesterone, testosterone and estradiol-17β in serum samples from two female Asian elephants were measured for the period of 32 months from February 1987 to September 1989. Serum samples were collected weekly from unanesthetized elephants. Each elephant showed eight ovarian cycles in 32 months. Ovarian cycles, characterized by changes in concentrations of serum progesterone, averaged 16.8 ± 0.6 (mean ± SEM. n = 14) weeks in length. The changes in concentrations of testosterone in the serum showed a similar pattern to those of progesterone with a striking increase noted during the luteal phase. The highest levels of serum estradiol-17β were noted when progesterone levels showed low basal values. These results suggest that estradiol-17β may be an index of follicular maturation during the estrous cycle in Asian elephants, and that the ovaries of Asian elephants may produce testosterone in the luteal phase.  相似文献   

18.
Musth is an important male phenomenon affecting many aspects of elephant society including reproduction. During musth, the temporal gland secretions (as well as the urine and breath) of adult male Asian elephants (Elephas maximus) discharge a variety of malodorous compounds together with the bicyclic ketal, frontalin. In contrast, teenage male elephants in musth release a sweet-smelling exudate from their facial temporal gland. We recently demonstrated that the concentration of frontalin becomes increasingly evident as male elephants mature. In the present study, we demonstrate that behaviors exhibited towards frontalin are consistent and dependent on the sex, developmental stage and physiological status of the responding conspecific individual. To examine whether frontalin functions as a chemical signal, perhaps even a pheromone, we bioassayed older and younger adult males, and luteal- and follicular-phase and pregnant females for their chemosensory and behavioral responses to frontalin. Adult males were mostly indifferent to frontalin, whereas subadult males were highly reactive, often exhibiting repulsion or avoidance. Female chemosensory responses to frontalin varied with hormonal state. Females in the luteal phase demonstrated low frequencies of responses, whereas pregnant females responded significantly more frequently, with varied types of responses including those to the palatal pits. Females in the follicular phase were the most responsive and often demonstrated mating-related behaviors subsequent to high chemosensory responses to frontalin. Our evidence strongly suggests that frontalin, a well-studied pheromone in insects, also functions as a pheromone in the Asian elephant: it exhibits all of the determinants that define a pheromone and evidently conveys some of the messages underlying the phenomenon of musth.  相似文献   

19.
Hormones play a crucial role in mediating genetic and environmental effects into morphological and behavioral phenotypes. In systems with alternative reproductive tactics (ART) shifts between tactics are hypothesized to be under proximate hormonal control. Most studies of the underlying endocrine changes behind ART have focused on fish and amphibians rather than mammals and few have investigated the potential interaction between different endocrine axes in regulating shifts between conditional dependent tactics. Using a combination of endocrine and behavioral data from male African elephants we expand on our previously published analysis and show that the initial increase in androgens predates the behavioral shifts associated with reproductively active periods, supporting the role of androgens in activating sexually active periods in males. A strong interactive effect between androgens and glucocorticoids was found to determine the presence or absence of temporal gland secretion and urine dribbling, signals associated with the competitive reproductive tactic of musth, with elevated glucocorticoids levels suppressing the occurrence of musth signals. In addition external environmental conditions affected hormone levels. The presence of receptive females resulted in elevated androgens in dominant musth males but increased glucocorticoids in subordinate non-musth males. The presented data on hormones, behavior and reproductive tactics strongly support an underlying endocrine mechanism for mediating the translation of intrinsic as well as extrinsic local conditions into the conditional dependent reproductive tactics in male elephants via interactions between the hypothalamic-pituitary-gonadal and -adrenal axes.  相似文献   

20.
Porcine luteal cells were obtained from corpora lutea on the 5th, 13th and 17th days of the estrous cycle. The cells were suspended at a concentration of 5 × 104 cells/ml in Eagle's medium with 2% human serum albumin. These cells were incubated with or without 0.01, 0.1, 1 or 10 μg/ml porcine prolactin. The amount of progesterone in cultures was estimated by a radio-immunological method after 30 min, 3 h and 6 h of culturing.Luteal cells obtained on the 5th day of the estrous cycle and incubated without prolactin secreted 71.24 ± 21.91 ng progesterone/ml of medium, whereas under the influence of prolactin at 0.01, 0.1, 1 and 10 μg/ml, 39.06 ± 13.33, 44.31 ± 12.69, 44.88 ± 16.85 and 51.62 ± 15.01 ng progesterone/ml (P<0.01) were secreted. Luteal cells from the 13th day of the estrous cycle incubated without prolactin secreted on average 70.72 ± 9.21 ng progesterone/ml of medium, whereas under the influence of different prolactin doses 50.75 ± 8.52, 46.54 ± 7.13, 43.30 ± 6.78 and 41.68 ± 7.21 ng progesterone/ml (P<0.01) were secreted.Prolactin did not change progesterone secretion by luteal cells obtained on the 17th day of the estrous cycle. An influence of the incubation time on progesterone secretion by these cells was observed: after 30 min of incubation the cells secreted 8.83 ± 2.95 ng/ml, after 3 h 8.12 ± 2.57 ng/ml and after 6 h 6.86 ± 1.91 ng/ml, irrespective of the amount of PRL added.The results suggest that prolactin plays a role in the luteolysis of the corpus luteum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号