首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Jaw movements of albino rats during biting and mastication of relatively hard food were recorded by means of conventional and X-ray cinematography. Mandibular kinetics have been analysed in the context of passive mechanical limits imposed by jaw morphology, particularly of the joints, and by the food itself. Movements have been described in terms of degrees of gape, condylar translation and horizontal rotation of the rami about the symphysis. During biting the condyle remains in the anterior two-thirds of the fossa, moves forward as the jaw opens and the converse. The rami usually spread well apart; the lower incisors are usually approximated. Incised food particles are transported toward the molars by means of coordinated jaw and tongue movements. The prominent palatal rugae of the diastemal region abet this process. In the power stroke of mastication, the mandible shifts forward as the lower toothrows move a little inward; the condyles occupy the posterior two-thirds of the fossa. All movements seen were bilaterally symmetrical. Simultaneous chewing occurred on both sides. It is suggested that the lingual components in the primarily anterior power stroke enhance grinding efficiency. A movable symphysis appears to be of critical importance in facilitating this type of mastication.  相似文献   

3.
The first biplanar X-ray motion analysis of mastication and food processing for Castor fiber is presented. While particles are chipped off interaction of incisors involves variable movements of the lower mandible and thus incisors. After jaw opening the tip of the lower incisors can reach different positions anteriorly of the upper incisors. Then the mandible moves upwards and backwards and brings the tips of the incisors into contact. The lower incisors slide along the wear facet of the upper to the ledge when the cheek teeth occlude. The glenoid fossa and lower jaw condyle are in close contact during incisor contact and no transverse movements are observed. Mastication involves interaction of the cheek teeth with no contact of the incisors. When the cheek teeth are in occlusal contact the mandible is moved forward and transverse, or mediolateral. In consecutive power strokes the jaw is moved alternately to the right and left side. When the jaw opens it is brought into a more central but not totally centred position. During mastication the condyles are positioned posteriorly to the glenoid allowing lateral movement of the mandible. The lateral movement is particularly noticeable in the anterior part of the mandible. With the lateral movements of the incisors one glenoid has to move posteriorly, the other anteriorly.  相似文献   

4.
The anatomy of the masticatory apparatus, and particularly of the mandibular joints, has led to the view that mandibular movement in the Rodentia is predominantly propalinal, or forwards and backwards in direction. As part of an investigation into the mechanism of function of the mandibular joints in these animals, the feeding behaviour of "August" strain and "Wistar" rats was examined by cinephotography and cinefluorography. The rats were trained to feed on barium sulphate impregnated biscuit and animal cake and to drink radio-opaque liquids. Cinefluorographic recordings of ingestion, mastication, deglutition and of drinking were taken in both the lateral and dorso-ventral projections.
Analysis of the recordings has shown a fundamental separation of ingestive and masticatory activity in the rat, which can be attributed to the morphology of the jaws and particularly to the disparity in the lengths of the mandibular and maxillary diastemas. To bring the incisor teeth into occlusion for ingestion, the mandible is brought forward through the rest position and the condyle into articulation with the anterior part of the fossa. In mastication the condyle is moved backwards to bring the molar teeth into occlusion and the condyle into articulation with the posterior articular facet on the fossa. Once the mandible has been moved into the appropriate position for either ingestion or mastication and deglutition, the movements involved in the separation or chewing of the food are cyclical with combined horizontal and transverse movements as well as the fundamental vertical movement acting to open and close the mouth. The basic movement of ingestion carries the mandibular incisors upwards and forwards across the lingual surfaces of the maxillary incisors, so separating the bite. The grinding stroke of mastication is a horizontal movement carrying the mandibular molars anteriorly across the maxillary.  相似文献   

5.
Objective: Clinical observations and mathematical models show that dental implants are influenced by the magnitude of loading. Therefore, the knowledge of mandible movement during mastication is important to assess occlusal and masticatory force vectors. The purpose of this study was to detect the path of movement of the lower jaw and to distinguish stages of mastication, duration of bolus processing and peak amplitude of mastication. Method: Motion analysis was used to record three-dimensional mandible movements. Individualized sensors were rigidly attached to the mandible of 51 study participants. At the beginning of the measurement, all subjects were asked to move the mandible in extreme positions (maximal opening and maximal lateral movements). Then, each subject masticated a bite of hard and soft food. Duration of bolus mastication and peak amplitude of mastication movement in mesio-distal, cranio-caudal and vestibulo-oral axes related to peak amplitude of marginal movements were evaluated for each subject. The chewing record of each subject was divided into three phases (chopping, grinding and swallowing), and the duration of mastication and number of closing movements were evaluated. Results: The findings of this pilot study suggest that masticatory movements vary in individuals. Bolus character influences the process duration, but not the frequency of closing movements. Neither gender nor age had any influence on either the time or frequency of bolus processing. Conclusion: Relationships to directions and magnitudes of acting chewing force should be more precisely examined since transversally acted forces during grinding are important factors in tooth/implant overloading.  相似文献   

6.
Wear facets on molars of the Eocene primate Adapis magnus are described. Striations on these wear facets indicate three separate directions of mandibular movement during mastication. One direction corresponds to a first stage of mastication involving orthal retraction of the mandible. The remaining two directions correspond to buccal and lingual phases of a second stage of mastication involving a transverse movement of the mandible. The mechanics of jaw adduction are analysed for both the orthal retraction and transverse stages of mastication. During the orthal retraction stage the greatest component of bite force is provided by the temporalis muscles acting directly against the food with the mandible functioning as a link rather than as a lever. A geometrical argument suggests that during the transverse stage of mastication bite force is provided by the temporalis muscles of both sides, the ipsilateral medial and lateral pterygoid muscles, and the contralateral masseter muscle.  相似文献   

7.
Mandibular condyles translate back and forth during mouth closing and opening in primates and most other mammals. To account for the functional significance of this phenomenon, several hypotheses have been proposed. The sarcomere-length hypothesis holds that condylar translation provides a mechanical advantage by minimizing sarcomere-length changes in the masseter-medial pterygoid complex throughout a wide range of jaw openings. As the hypothesis is inherently associated with the locations of the instantaneous centers of rotation (ICRs) of the mandible, a more accurate determination of this variable would help test this hypothesis. This study investigated ICRs in the sagittal plane during human symmetrical mandibular opening based on a recently developed analytical method. The results confirmed that, with inter- and intraindividual variation, the natural opening was a simultaneous rotational and translational motion. In addition, the ICR was found to lie closer to the condyle during the first 10° than during the rest of the rotation. This suggests that for the condyles the rotational component is somewhat more significant at the early phase than at the late phase of the opening stroke. For the whole range of the natural opening, the grossly approximated centers of rotation (CRs) scattered below the palpable lateral condylar poles in the superior half of the ramus. This study supports neither the ICR path determined by Grant ([1973], J. Biomech. 6:109–113) nor the conclusions reached by recording manually operated jaw movements in human cadavers (Rees [1954] Br. Dent. J. 6:125–133). Moss's suggestion ([1960] Disorders of the Temporomandibular Joint (Philadelphia: W.B. Saunders), pp. 73–88) that the center of rotation lies at the lingula is also not confirmed. Although the new data cannot reject the sarcomere-length hypothesis, they do not strongly support it either. Another hypothesis is proposed in this study as plausible. With this hypothesis, translation is regarded as an adaptation to the use of the inferior head of the lateral pterygoid as a jaw depressor in noncarnivorous mammals. Potential functional advantages of this portion of the muscle are also discussed. Am J Phys Anthropol 106:35–46, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Optoelectronic analysis of mandibular movement and electromyography (EMG) of masticatory muscles in Cavia porcellus indicate bilateral, unilateral, and gnawing cycles. During bilateral and unilateral cycles, the mandibular tip moves forward, lateral, and down during the lingual phase of the power stroke to bring the teeth into occlusion. EMG activity is generally asymmetric, with the exception of activity of the temporalis muscle during bilateral cycles. During gnawing cycles, the mandible moves in an anteroposterior direction that is opposite that during bilateral and unilateral chew cycles. Bilateral and unilateral cycles of pellets were significantly longer than carrot. With the exception of the width of bilateral cycles, the magnitude of cycle width, length, and height during the mastication of carrots was greater than that during the mastication of pellets. Significant differences exist between EMG durations during mastication of pellets and carrots. The lateral pterygoid displays continuous activity during gnawing cycles. Significant differences also exist in the durations of EMG activity between the working and balancing side during all three cycle types. High level activity of balancing side temporalis and anterior belly of digastric (ABD) during bilateral cycles occurs during rotation and depression of the mandible during the power stroke. The temporalis apparently provides a ?braking”? or compensatory role during closing and power strokes. Differences between Cavia masticatory patterns and those shown by Rattus and Mesocricetus are apparently due to differences in dental morphology, occlusal relationships, and, possibly, the poorly developed temporalis in Cavia. The large number and wide diversity of rodent groups afford students of mammalian mastication an opportunity to investigate and compare different masticatory specializations.  相似文献   

9.
Our understanding of human jaw biomechanics has been enhanced by computational modelling, but comparatively few studies have addressed the dynamics of chewing. Consequently, ambiguities remain regarding predicted jaw-gapes and forces on the mandibular condyles. Here, we used a new platform to simulate unilateral chewing. The model, based on a previous study, included curvilinear articular guidance, a mobile hyoid apparatus, and a compressible food bolus. Muscles were represented by Hill-type actuators with drive profiles tuned to produce target jaw and hyoid movements. The cycle duration was 732 ms. At maximum gape, the lower incisor-point was 20.1mm down, 5.8mm posterior, and 2.3mm lateral to its initial, tooth-contact position. Its maximum laterodeviation to the working-side during closing was 6.1mm, at which time the bolus was struck. The hyoid's movement, completed by the end of jaw-opening, was 3.4mm upward and 1.6mm forward. The mandibular condyles moved asymmetrically. Their compressive loads were low during opening, slightly higher on the working-side at bolus-collapse, and highest bilaterally when the teeth contacted. The model's movements and the directions of its condylar forces were consistent with experimental observations, resolving seeming discordances in previous simulations. Its inclusion of hyoid dynamics is a step towards modelling mastication.  相似文献   

10.
The article describes part of a research project aiming to develop a new modular software tool for the individual dynamic numerical simulation of the human mandible using the finite element method (FEM). Its planned use in the clinical setting makes it very important to validate the results of the simulations. Here, the function of the masticatory muscles is to be tested. On the basis of biomechanical data from the literature, standard movements, such as closing the mouth, forward movement, lateral movement or backward movement, were dynamically simulated. Apart from muscle activity, the movements of the mandible are defined by the temporomandibular joint. At present, translating the condylar dynamics to the simulation still poses problems. For this reason, therefore, simulations of the two extreme cases "fixed" and "force-free" condyles are compared. While in the case of fixed condyles, some of the movements could be reproduced either not at all or only weakly, in the case of force-free condyles, all standard movements were reproduced qualitatively, albeit without the guiding effect of the joint capsule or the articular disc.  相似文献   

11.
Single-element and/or rosette strain gages were bonded to mandibular cortical bone in Galago crassicaudatus and Macaca fascicularis. Five galago and eleven macaque bone strain experiments were performed and analyzed. In vivo bone strain was recorded from the lateral surface of the mandibular corpus below the postcanine tooth row during transducer biting and during mastication and ingestion of food objects. In macaques and galagos, the mandibular corpus on the balancing side is primarily bent in the sagittal plane during mastication and is both twisted about its long axis and bent in the sagittal plane during transducer biting. On the working side, it is primarily twisted about its long axis and directly sheared perpendicular to its long axis, and portions of it are bent in the sagittal plane during mastication and molar transducer biting. In macaques, the mandibular corpus on each side is primarily bent in the sagittal plane and twisted during incisal transducer biting and ingestion of food objects, and it is transversely bent and slightly twisted during jaw opening. Since galagos usually refused to bite the transducer or food objects with their incisors, an adequate characterization of mandibular stress patterns during these behaviors was not possible. In galagos the mandibular corpus experiences very little transverse bending stress during jaw opening, perhaps in part due to its unfused mandibular symphysis. Marked differences in the patterns of mandibular bone strain were present between galagos and macaques during the masticatory power stroke and during transducer biting. Galagos consistently had much more strain on the working side of the mandibular corpus than on the balancing side. These experiments support the hypothesis that galagos, in contrast to macaques, employ a larger amount of working-side muscle force relative to the balancing-side muscle force during unilateral biting and mastication, and that the fused mandibular symphysis is an adaption to use a maximal amount of balancing-side muscle force during unilateral biting and mastication. These experiments also demonstrate the effects that rosette position, bite force magnitudes, and types of food eaten have on recorded mandibular strain patterns.  相似文献   

12.
The relationship between translation of the mandibular condyle during symmetrical mandibular rotation, i.e., symmetrical jaw depression and elevation, and the function of the superficial masseter muscle was examined in light of relative torque and the length-tension relationship for muscle. Lateral cephalograms of live adult rhesus monkeys (Macaca mulatta) were analyzed using two models: (1) Model A, normal symmetrical jaw rotation accompanied by condylar translation; and (2) Model B, mandibular rotation about an axis fixed at the position of the condyles during centric occlusion. The decrease in relative torque and the excursion of the superficial masseter at mouth-open positions are significantly greater in Model B than in Model A. Symmetrical rotation of the jaw about a fixed axis would result in a 35% greater loss of maximum producible tension at maximum gape than rotation associated with condylar translation. These results suggest that condylar translation during mandibular depression and elevation functions to minimize reduction in relative torque and excursion of superficial masseter muscle, thereby maintaining optimal potential for exerting maximum tension during jaw closure.  相似文献   

13.
The movement of the entire tongue and intermolar eminence during mastication is described in the domestic rabbit (Oryctolagus cuniculus). Tongue movement and jaw position were analyzed videofluorographically from separate lateral and dorso-ventral views in six rabbits. Metallic markers were inserted into the tongue so that its movement was visible on the fluorographic image. Frame-by-frame analysis of the videofluorographic tape recordings demonstrates that tongue movement in all animals was identical in direction during each part of the chewing cycle. In the lateral view the forepart of the tongue moves down and forward during the opening stroke, whereas the intermolar eminence moves up and forward to appose the palate. During the closing stroke, as the tip of the tongue moves up and back, the intermolar eminence lowers from the palate and retracts. During the power stroke the forepart of the tongue is at its most elevated and retruded position, while the intermolar eminence is its lowest and most retruded. The dorso-ventral view showed that lateral movement of the tongue and mandible are highly synchronous. The intermolar eminence decreases in width during the power stroke, possibly twisting to place or keep food on the teeth. An anterior to posterior undulating movement of the entire tongue occurs throughout the chewing cycle. As the intermolar eminence elevates to appose the palate during the opening stroke, it may replace the bolus on the teeth on the chewing side. The intermolar eminence also appears to be twisting during the closing and power strokes to place or maintain food on the teeth.  相似文献   

14.
The relationship between the physical properties of solid food and the masticatory parameters is clarified. Eight solid foods of varying physical properties were chosen. Electromyography of the jaw-closing muscles and mandibular kinematics in eleven young subjects were recorded. The masticatory parameters were derived from the recorded data for the entire mastication process, for the first bite, and in the early, middle, and late stages of mastication. After calculating values relative to the mean value for each subject, nine parameters representing each group were chosen through a cluster analysis. Three principal components were extracted, each of them related to the masticatory time and cycle, minimum jaw opening at the early stage of mastication, and masticatory force. The principal component scores for each food were different, except for one combination in which the physical properties under large and extra-large deformations were similar, despite different breaking properties or small deformation properties. The masticatory parameters did not correlate with the physical properties of food measured for small deformation.  相似文献   

15.
The relationship between the physical properties of solid food and the masticatory parameters is clarified. Eight solid foods of varying physical properties were chosen. Electromyography of the jaw-closing muscles and mandibular kinematics in eleven young subjects were recorded. The masticatory parameters were derived from the recorded data for the entire mastication process, for the first bite, and in the early, middle, and late stages of mastication. After calculating values relative to the mean value for each subject, nine parameters representing each group were chosen through a cluster analysis. Three principal components were extracted, each of them related to the masticatory time and cycle, minimum jaw opening at the early stage of mastication, and masticatory force. The principal component scores for each food were different, except for one combination in which the physical properties under large and extra-large deformations were similar, despite different breaking properties or small deformation properties. The masticatory parameters did not correlate with the physical properties of food measured for small deformation.  相似文献   

16.
The anatomy of the hyoid apparatus and positional changes of the hyoid bone during mastication and deglutition are described in the New Zealand White rabbit (Oryctolagus cuniculus). A testable model is constructed to predict the range of movement during function of the hyoid, a bone entirely suspended by soft tissue. Frame-by-frame analysis of a videofluorographic tape confirms the accuracy of the prediction through observation of hyoid bone excursion during oral behavior. During chewing, translation of the hyoid bone is diminutive and irregular, lacking a clearly discernible path of excursion. However, some movements of the hyoid occur with regularity. During fast opening, anterodorsal movement of the hyoid is interrupted with an abrupt posteroventral depression when the bolus is moved posteriorly toward the cheek teeth by the tongue. This clockwise rotation (when viewed from the right side) of the hyoid accompanies jaw opening and is reversed (posteroventral movement) for the jaw closing sequence. Lateral movements of the hyoid may be slightly coupled to mandibular rotation in the horizontal plane. The findings suggest that the hyoid bone maintains a relatively static position during the dynamics of chewing. The primary function would be to provide a stable base for the movements of the tongue. Another possible function would be to control the position of the larynx within the pharyngeal cavity. Some characteristic features of the rabbit hyoid apparatus may be consequential to relatively erect posture and a saltatory mode of locomotion.  相似文献   

17.
In dentistry, mechanical articulators with which mandibular movements can be reproduced in dentals casts play a major role. Commonly used semiadjustable articulators, however, have major limitations: On the one hand, the movement of the mandible is not reproduced exactly, on the other, they do not provide time-related information on jaw movement. Both problems can be solved by replacing the mechanical articulator by a digital simulation ("virtual articulator") based on digitized plaster casts and electronically recorded masticatory movements. We present a system for the 3D measurement of plaster casts in a skull-related, anatomical coordinate system using the fringe projection technique, and electronically recorded condylar movements. Using numerical algorithms, the contacts between upper and low jaw, and the angle of rotation of the temporomandibular joint can be computed for each movement in dynamic occlusion. Taking the data recorded from a patient as an example, the influence of the accuracy of the digitization of plaster casts on the computation of the rotation of the temporomandibular joint is discussed in relation to the anatomy of the masticatory apparatus.  相似文献   

18.
There is disagreement as to whether the mandibular condyles are stress-bearing or stress-free during mastication. In support of alternative models, analogies have been drawn with Class III levers, links, and couple systems. Physiological data are reviewed which indicate that maximum masticatory forces are generated when maxillary and mandibular teeth are in contact, and that this phase lasts for over 100 msec during many chewing strokes. During this period, the mandible can be modeled as a beam with multiple supports. Equations of simple beam theory suggest that large condylar reaction forces are present during mastication. With unilateral molar biting in man, the total condylar reaction force may be over 75% of the bite force. Analysis of a frontal projection demonstrates that up to 80% of the total condylar reaction force is borne by the contralateral (balancing side) condyle during unilateral molar biting. A comparison of human, chimpanzee (P. troglodytes), spider monkey (A. belzebuth), and macaque (Macaca sp.) morphology indicates that the frugivorous chimpanzee and spider monkey have a relatively lower condylar reaction force than the omnivorous macaque or man during molar biting. The percentage reaction force during incisal biting is lower in man than in the other primates, and lower in the frugivorous primates than in the macaque.  相似文献   

19.
Biomechanical scaling of mandibular dimensions in New World Monkeys   总被引:4,自引:0,他引:4  
Previous studies show that folivorous Old World monkeys have shorter, deeper mandibles and shorter, wider condyles than frugivorous ones. These morphologies have been related to leaf mastication in colobines and ingestion of large, tough fruits in cercopithecines. This study examines New World monkeys in order to determine whether they exhibit similar adaptations to diet. New World monkeys have relatively long, transversely thin mandibles and somewhat deep mandibles and narrow condyles. Except for their deep mandibles, folivorous New World monkeys (i.e., Alouatta) do not exhibit the mandibular and condylar specializations typical of cercopithecid folivores. Reliance on comparatively nonfibrous foods plus alterations in masticatory muscle ratios among New World monkeys partially accounts for observed differences between folivorous New and Old World monkeys. In addition, adaptations for howling in Alouatta appear to have a significant effect on mandibular morphology. A biomechanical interpretation of craniofacial scaling patterns suggests that the mandibles of New World monkeys are subjected to lower condylar loads and considerably less twisting of the mandibular corpus than those of comparable Old World monkeys.  相似文献   

20.
Iharkutosuchus makadii is a basal eusuchian crocodylian with multicusped teeth discovered from the Upper Cretaceous of Hungary. Skull and dentition morphology indicates an active food processing for this crocodylian. First among crocodylians, a combination of different analyses, including cranial adductor muscle reconstruction, tooth wear pattern, and enamel microstructure studies, is applied here to support this hypothesis. Data provide unambiguous evidence for significant dental occlusion that was a result of a unique, transverse mandibular movement. Reconstruction of the jaw adductors demonstrates strong muscles responsible for slow but active jaw closure as the motor of transverse jaw movement; nevertheless muscles producing rapid jaw closure were reduced. Macrowear orientations show a dominantly transverse movement of the mandibles completed by a slight anteroposterior component. Along with quadrate morphology, macrowear further indicates that this motion was accomplished by alternate rotation of the mandibles about the quadrate condyles. Dental morphology and wear patterns suggest two types of power stroke: a slicing–crushing stroke associated dominantly with anterior tooth–food–tooth contact (with a low degree of transverse mandibular movement) during in the early stage of mastication, and a grinding stroke with significant posterior tooth–tooth contact and a dynamic transverse movement occurring later. The patterns of microwear show a diverse diet for Iharkutosuchus including both soft and hard items. This is also supported by the microstructure of the thick, wrinkled enamel built up mostly by poorly developed columnar units. Based on wear patterns, ontogenetic variation in feeding habits of Iharkutosuchus is also recognized. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号