首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of plants to maintain water flow through leaves under water stress-induced tension (assessed as the leaf hydraulic vulnerability; P50 leaf) is intimately linked with survival. We examined the significance of P50 leaf as an adaptive trait in influencing the dry-end distributional limits of cool temperate woody angiosperm species. We also examined differences in within-site variability in P50 leaf between two high-rainfall montane rainforest sites in Tasmania and Peru, respectively. A significant relationship between P50 leaf and the 5th percentile of mean annual rainfall across each species distribution was found in Tasmania, suggesting that P50 leaf influences species climatic limits. Furthermore, a strong correlation between P50 leaf and the minimum rainfall availability was found using five phylogenetically independent species pairs in wet and dry evergreen tree species, suggesting that rainfall is an important selective agent in the evolution of leaf hydraulic vulnerability. Greater within-site variability in P50 leaf was found among dominant montane rainforest species in Tasmania than in Peru and this result is discussed within the context of differences in spatial and temporal environmental heterogeneity and parochial historical ecology.  相似文献   

2.
Globally, Phytophthora cinnamomi is listed as one of the 100 worst invasive alien species and active management is required to reduce impact and prevent spread in both horticulture and natural ecosystems. Conversely, there are regions thought to be suitable for the pathogen where no disease is observed. We developed a climex model for the global distribution of P. cinnamomi based on the pathogen's response to temperature and moisture and by incorporating extensive empirical evidence on the presence and absence of the pathogen. The climex model captured areas of climatic suitability where P. cinnamomi occurs that is congruent with all available records. The model was validated by the collection of soil samples from asymptomatic vegetation in areas projected to be suitable by the model for which there were few records. DNA was extracted, and the presence or absence of P. cinnamomi was determined by high‐throughput sequencing (HTS). While not detected using traditional isolation methods, HTS detected P. cinnamomi at higher elevations in eastern Australia and central Tasmania as projected by the climex model. Further support for the climex model was obtained using the large data set from south‐west Australia where the proportion of positive records in an area is related to the Ecoclimatic Index value for the same area. We provide for the first time a comprehensive global map of the current P. cinnamomi distribution, an improved climex model of the distribution, and a projection to 2080 of the distribution with predicted climate change. This information provides the basis for more detailed regional‐scale modelling and supports risk assessment for governments to plan management of this important soil‐borne plant pathogen.  相似文献   

3.
Abstract In October 1999, patches of dead and dying trees were identified in rainforest vegetation throughout the Tully Falls area in north Queensland, Australia. Previous incidents of patch death in the region had been attributed to Phytophthora cinnamomi. The distribution of P. cinnamomi was assessed by testing for its presence in seven sites displaying signs of dieback and seven sites that appeared healthy. Each site was a circular quadrat, 20‐m radius (total area = 1256.6 m2). Within each quadrat, two perpendicular line transects were constructed. A single soil sample (250 g) was taken at the centre point and at 1‐m intervals along each transect. All soil samples were tested for the presence of P. cinnamomi using a combination of lupin baiting, subsequent culturing and microscopic identification. Of the 1134 samples, 783 recorded positive responses. The mean number of positive responses was not significantly greater in patch death sites than in control sites, suggesting that at this scale of resolution the distribution of P. cinnamomi was uniform. However, at spatial scales of 1‐m intervals across transects the distribution of P. cinnamomi was random.  相似文献   

4.
The observed variability in vegetation structure within landscapes was used as the basis for model estimates of the range of annual productivity of landscape patches at four sites along a moisture gradient in southern Africa ranging from 879 to 365 mm mean annual rainfall. Principal components of patch‐scale variability in leaf area, woody biomass and vertical leaf profiles were derived from intensive characterization of the small‐scale spatial structure of woody vegetation at each site. For each site, the mean and extremes of the principal component distribution parameterized an ecophysiology model of vegetation productivity. Vegetation was most heterogeneous at intermediate locations along the rainfall gradient. Variability in vegetation structure led to a range of annual productivity within one site (600 mm) that accounted for 68% of the total range in mean productivity across all sites. Patch‐scale estimates of tree productivity were found to be primarily correlated to annual rainfall (r2=0.66, P=0.001) and not woody leaf area (r2=0.01, P=0.75), while grass productivity was found to be related to values of woody leaf area (r2=0.77, P<0.001) and not annual rainfall (r2=0.11, P=0.29). This result indicates that life‐form interactions have a significant role in controlling vegetation productivity across the rainfall gradient. The findings of this study emphasize the importance of considering heterogeneity rather than mean structure when modeling productivity, particularly when considering dynamic vegetation structure, where differences between landscape patches may not be well represented in the mean structure.  相似文献   

5.
Abstract The pathogen Phytophthora cinnamomi causes extensive ‘dieback’ of Australian native vegetation. This study investigated the distribution of infection in an area of significant sclerophyll vegetation in Australia. It aimed to determine the relationship of infection to site variables and to develop a predictive model of infection. Site variables recorded at 50 study sites included aspect, slope, altitude, proximity to road and road characteristics, soil profile characteristics and vegetation attributes. Soil and plant tissues were assayed for the presence of the pathogen. A geographical information systyem (GIS) was employed to provide accurate estimations of spatial variables and develop a predictive model for the distribution of P. cinnamomi. The pathogen was isolated from 76% of the study sites. Of the 17 site variables initially investigated during the study a logistic regression model identified only two, elevation and sun‐index, as significant in determining the probability of infection. The presence of P. cinnamomi infection was negatively associated with elevation and positively associated with sun‐index. The model predicted that up to 74% of the study area (11 875 ha) had a high probability of being affected by P. cinnamomi. However, the present areas of infection were small, providing an opportunity for management to minimize spread into highly susceptible uninvaded areas.  相似文献   

6.
The invasive plant pathogen Phytophthora cinnamomi (Stramenopila, Oomycota) has been introduced into 15 of the 25 global biodiversity hotspots, threatening susceptible rare flora and degrading plant communities with severe consequences for fauna. We developed protocols to contain or eradicate P. cinnamomi from spot infestations in threatened ecosystems based on two assumptions: in the absence of living hosts, P. cinnamomi is a weakly competitive saprotroph; and in the ecosystems we treated, the transmission of the pathogen occurs mainly by root-to-root contact. At two P. cinnamomi-infested sites differing in climate and vegetation types, we applied increasingly robust treatments including vegetation (host) destruction, fungicides, fumigation and physical root barriers. P. cinnamomi was not recovered at three assessments of treated plots 6–9 months after treatments. Given the high rates of recovery of P. cinnamomi from untreated infested soil and the sampling frequency, the probability of failing to detect P. cinnamomi in treated soil was <0.0003. The methods described have application in containing large infestations, eradicating small infestations and protecting remnant populations of threatened species.  相似文献   

7.
Abstract Pollen analysis of the sediments of a small bog, supporting a stand of cool temperate rainforest in southeastern Tasmania, was undertaken in order to examine the history of the stand dominant, Nothofagus cunninghamii, presently growing outside its predicted climatic range. The pollen record covers at least the last 9000 years and reveals changes in the bog and in the surrounding vegetation, although pollen percentages of N. cunninghamii are sufficiently high to indicate that the species could have had a local presence throughout the recorded period. It is likely that this N. cunninghamii stand is relictual, surviving not only Holocene climates, but also the cool dry conditions of the last glacial period. This ability to survive changing and sometimes very unfavourable climates leads to the conclusion that great caution must be exercised in using present climates alone to predict the potential distribution of N. cunninghamii.  相似文献   

8.
African horse sickness (AHS) is a vector-borne, infectious disease of equids caused by African horse sickness virus (AHSV) . The only proven field vector of the virus is the biting midge Culicoides imicola. Following a recent epizootic (1989–91) of AHS in Morocco, light traps and automatic weather stations were operated for 2 years at twenty-two sites distributed over much of the country. The annually-averaged mean daily trap catch of C. imicola at these sites was negatively correlated with wind speed, and positively correlated with the average and mean annual minimum NDVI (Normalized Difference Vegetation Index, a remotely sensed measure of vegetation activity). There were no significant correlations between the mean daily trap catch and air temperature, soil temperature, relative humidity, saturation deficit, rainfall, altitude or the mean annual maximum or range of NDVI. The best two-variable model, which combined WindspeedMnAvMn (the average daily minimum wind speed of the least windy month) and NDVImin (the average annual minimum NDVI) as predictors, explained over 50% of the variance in the annually-averaged mean daily trap catch of C. imicola. There was a significant, positive correlation between minimum wind speed at night and the daily mortality rate of adult female C. imicola and it is suggested that the relationship between wind speed and the abundance of C. imicola arises from effects on adult mortality or dispersal. Considering several climatic variables, in North Africa NDVImin was most significantly correlated with total annual rainfall. It is suggested that the relationship between NDVImin and the abundance of C. imicola arises from the impact of soil moisture on both. It is proposed that areas of Morocco with higher levels of soil moisture in late summer or autumn provide more, larger and/or more enduring breeding sites for C. imicola, as well as supporting more photosynthetically active vegetation and hence having higher NDVI.  相似文献   

9.
Future climates have the potential to alter decomposition rates in tropical forest with implications for carbon emissions, nutrient cycling and retention of standing litter. However, our ability to predict impacts, particularly for seasonally wet forests in the old world, is limited by a paucity of data, a limited understanding of the relative importance of different aspects of climate and the extent to which decomposition rates are constrained by factors other than climate (e.g. soil, vegetation composition). We used the litterbag method to determine leaf litter decay rates at 18 sites distributed throughout the Australian wet tropics bioregion over a 14‐month period. Specifically, we investigated regional controls on litter decay including climate, soil and litter chemical quality. We used both in situ litter collected from litterfall on site and a standardized control leaf litter substrate. The control litter removed the effect of litter chemical quality and the in situ study quantified decomposition specific to the site. Decomposition was generally slower than for other tropical rainforests globally except in our wet and nutrient‐richer sites. This is most likely attributable to the higher latitude, often highly seasonal rainfall and very poor soils in our system. Decomposition rates were best explained by a combination of climate, soil and litter quality. For in situ litter (native to the site) this included: average leaf wetness in the dry season (LWDS; i.e. moisture condensation) and the initial P content of the leaves, or LWDS and initial C. For control litter (no litter quality effect) this included: rainfall seasonality (% dry season days with 0‐mm rainfall), soil P and mean annual temperature. These results suggest that the impact of climate change on decomposition rates within Australian tropical rainforests will be critically dependent on the trajectory of dry season moisture inputs over the coming decades.  相似文献   

10.
Due to local extinction, the endangered green carpenter bee (Xylocopa aerata) has a disjunct distribution in the southeast of Australia. The species relies on dead softwood from a small selection of plant species for making its nests. Habitat fragmentation, combined with deleterious fire events, is thought to have negatively impacted on nesting substrate availability and recolonisation chances. Here, we use MaxEnt algorithm to model both the current distribution and the effect of climate change scenarios on the distribution of both X. aerata and four plant species that provide most of its nesting substrate: Banksia integrifolia, B. marginata, Xanthorrhoea arborea and Xanthorrhoea semiplana subsp. tateana. The annual mean temperature is the strongest climatic predictor of the distribution of X. aerata and its host plants. The modelled distribution of the bee under current climatic conditions indicates that climatic factors are unlikely to cause local extinctions. In all future scenarios, suitable areas for X. aerata and each of its nesting hosts are expected to contract towards the southeast of mainland Australia. The suitability of Kangaroo Island for the bee and its current local current host species is maintained in all scenarios, while Tasmania will become increasingly suitable for all species. The Grampians National Park in western Victoria, where the bee species were last seen outside of its current range (in the 1930s), is predicted to remain suitable for X. aerata and several host plants under all scenarios. Therefore, this relatively large area of native vegetation may be a good case study for re‐introduction as part of future conservation efforts.  相似文献   

11.
Abstract An assessment of the impact of the soil-borne pathogenic fungus, Phytophthora cinnamomi (Oomycetes, Peronosporales), on the plant communities of the Stirling Range National Park was carried out between December 1988 and April 1989. A total of 541 plant species were collected, with the Proteaceae and the Myrtaceae the two largest families in the study region. Of the 330 species assessed for susceptibility to P. cinnamomi, 118 (36%) were recorded as having at least some individuals in a population judged to have been killed by the fungus and 33 (10%) were highly sensitive to the pathogen (more than 80% of plants in a population killed). Several families had large numbers of susceptible species, while others were apparently unaffected by the pathogen. Notably, 85% of proteaceous species assessed were rated as susceptible to P. cinnamomi. Proteaceous elements had a mean projective foliage cover of 40% in healthy plant communities, but had a mean cover of only 10% at sites that had a long history of infestation with the fungus. In contrast, some species with low levels of susceptibility to the pathogen, such as some monocotyledons, were found to be more abundant at old-infested sites than at healthy sites. Growth form may also influence susceptibility, with herbaceous perennials, annuals and geophytes assessed in this survey apparently unaffected by the fungus whereas 48% of woody perennials surveyed were susceptible. Changes in the floristic structure of plant communities may influence the composition of associated animal communities. In particular, vertebrate flower visitors may be vulnerable since 59% of the species with vertebrate-pollinated flowers were found to be susceptible to the pathogen. This research highlights the serious ecological impact of P. cinnamomi on native plant communities and suggests that significant components of the flora and associated fauna of the southwest of Western Australia are endangered by this virulent pathogen.  相似文献   

12.
There has been a great deal of disagreement surrounding the capacity of Bombus terrestris to invade Tasmanian native vegetation. This paper reviews the conflicting findings of previous surveys of the invasion of Tasmania by B. terrestris, and presents new data from the 2004–2005 austral summer. From this, it is clear that B. terrestris has extensively invaded Tasmanian native vegetation. The new data provide strong evidence that B. terrestris is breeding in native vegetation in every region of Tasmania. More than 10 bumblebees were seen in one day at 153 locations in native vegetation, including 42 locations within 10 National Parks and 38 locations within the Tasmanian Wilderness World Heritage Area. Nests of B. terrestris were also found within two National Parks. These findings suggest that B. terrestris would also invade native vegetation in non-arid temperate regions of the Australian mainland, if it is introduced there.  相似文献   

13.
The impact of the plant pathogen Phytophthora cinnamomi and the fungicide phosphite on species assemblages, richness, abundance and vegetation structure was quantified at three sites in Kwongkan communities in the Southwest Australian Floristic Region. Healthy and diseased vegetation treated with phosphite over 7–16 years was compared with non‐treated healthy and diseased vegetation. After site differences, disease had the greatest effect on species assemblages, species richness and richness within families. Disease significantly reduced cover in the upper and lower shrub layers and increased sedge and bare ground cover. Seventeen of 21 species assessed from the families Ericaceae, Fabaceae, Myrtaceae and Proteaceae were significantly less abundant in non‐treated diseased vegetation. In diseased habitats, phosphite treatment significantly reduced the loss of shrub cover and reduced bare ground and sedge cover. In multivariate analysis of species assemblages, phosphite‐treated diseased plots grouped more closely with healthy plots. Seven of 17 susceptible species were significantly more abundant in phosphite‐treated diseased plots compared with diseased non‐treated plots. The abundance of seven of 10 Phytophthora‐susceptible species was significantly higher along transects in phosphite‐treated vegetation. Comparison of the floristics of healthy non‐treated with healthy‐treated plots showed no significant differences in species assemblages. Of 21 species assessed, three increased in abundance and only one decreased significantly in phosphite‐treated healthy plots. In three Kwongkan communities of the SWAFR, P. cinnamomi had a profound impact on species assemblages, richness, abundance and vegetation structure. There was no evidence of adverse effects of phosphite treatment on phosphorus‐sensitive species, even after fire. Treatment with phosphite enhanced the survival of key susceptible species and mitigated disease‐mediated changes in vegetation structure. In the absence of alternative methods of control in native communities, phosphite will continue to play an important role in the protection of high priority species and communities at risk of extinction due to P. cinnamomi.  相似文献   

14.
The concept of an arid pleniglacial in the Middle East depends primarily on the interpretation of pollen diagrams including those of Lake Zeribar in the Zagros Mountains of western Iran. It has been assumed that Lake Zeribar was surrounded by a Chenopodiaceae-Artemisia steppe and that the climate was therefore dry. Both assumptions are questioned. The environment of Pleistocene Lake Zeribar may have been similar to the tragacanthic or alpine zone of the modern Zagros Mountains. The dominance by pollen of Chenopodiaceae and Artemisia is explained by low pollen production of high-altitude vegetation, preferential incorporation of pollen of late-blooming plants into the sediments, and high production and long-distance transport of lowland pollen. In any case, high percentages of Chenopodiaceae and Artemisia pollen do not necessarily indicate low annual precipitation but a highly seasonal climate with cold winters and hot, dry summers. Such a climatic regime was in effect continuous except for a period beginning about 10600 B. P. during which summer rainfall or reduced summer drought occurred. This change in seasonality resulted in the dominance of Poaceae pollen and the initial increase in arboreal pollen. A moisture curve based on the ratio between Chenopodiaceae and Artemisia pollen indicates a pleniglacial climate with wet winters and a late-glacial and early-Holocene climate with periods of intense aridity. The climatic history presented here is compatible with non-palynological evidence of regional late Pleistocene climates and with seasonality changes suggested by climatic modelling based on orbital parameters.Abbreviations C/A Chenopodiaceae-Artemisia ratio  相似文献   

15.
Abstract Observations of the large earth bumblebee, Bombus terrestris (L.), in native vegetation were collated to determine the extent to which this exotic species has invaded Tasmanian native vegetation during the first 9 years after its introduction. The range of B. terrestris now encompasses all of Tasmania's major vegetation types, altitudes from sea level to 1260m a.s.L, and the entire breadth of annual precipitation in the state from more than 3200 mm to less than 600 mm. Observations of workers carrying pollen, together with the presence of large numbers of bumblebees at many localities across this range indicate that colonies are frequently established in native vegetation. Evidence that colonies are often successful was obtained from repeated observations of the species during more than 1 year at particular sites. Unequivocal evidence of colonies was obtained from six National Parks, including four of the five in the Tasmanian Wilderness World Heritage Area (WHA). Indeed, the species has been present in the WHA for at least as long as it has in the city of Hobart, where it was first recorded. In southwestern Tasmania, evidence of colonies was obtained up to 40km from gardens, 61 km from small towns and 93 km from large towns. Hence, contrary to previous suggestions, the species is established in the most remote parts of Tasmania and is not dependent on introduced garden plants. Given their strong record of invasion, it is likely that B. terrestris will form feral populations on the mainland of Australia and in many other parts of the world if introduced. Because of their likely negative impacts on native animals and plants, and potential to enhance seed production in weeds, the spread of bumblebees should be avoided.  相似文献   

16.
This paper documents changes in the floristic composition of Eucalyptus marginata Donn (jarrah) woodlands over 7 years of recovery from continual, intensive livestock grazing. In remnants of native woodland left after agricultural clearing, which have been subjected to livestock grazing, comparisons were made between the floristics of fenced exclosure plots and open plots that continued to be grazed. The vegetation in nearby remnants, which had not been subjected to livestock grazing, was also surveyed. An initial increase in annual exotic pasture species after grazing relief was only temporary and highly influenced by fluctuations in annual climatic patterns, particularly rainfall distribution and abundance. Subsequent years saw a decrease in exotic annuals in exclosure plots and an increase in native perennials, in a trend towards becoming more floristically similar to the ungrazed sites. Germination of overstorey species was observed in the exclosure plots, however, development of seedlings and saplings was sparse. Results indicate that for jarrah woodland in southwestern Australia, natural regeneration is possible after the removal of livestock, with the return (within 6 years) of native species richness to levels similar to those found in ungrazed vegetation. Re‐establishment of cover, however, appears to take longer. The floristic dynamics are described in terms of a nonequilibrium model. Two vegetation states exist, degraded remnants with an understorey dominated by annual species, and ungrazed vegetation with an understorey dominated by perennial shrubs and herbs. The former state is maintained by continual heavy grazing by livestock. Upon relief from grazing, the vegetation undergoes a transition towards floristic similarity to ungrazed vegetation. After 6 years, vegetation change in the exclosure plots appears to be continuing and therefore it is still in transition.  相似文献   

17.
Phytophthora cinnamomi-suppressivc soils were found to be widely distributed in nature. About 40 % of soil samples collected from locations with different vegetation, soil type or elevation throughout the island of Hawaii were suppressive to chlamydospore germination of Phytophthora cinnamomi. Soil samples collected from the same general areas varied greatly in degree of suppressive-ness to P. cinnamomi, ranging from conducive to strongly suppressive. Among the 155 soil samples tested, those with pH close to 4 or 8 tend to be more suppressive to P. cinnamomi than those with pH close to 6.  相似文献   

18.
This is the first report of the mycorrhizal status of Welwitschia mirabilis, a gymnosperm endemic to the Namib Desert. Like all other gymnosperms except the Pinaceae and Gnetaceae, W. mirabilis is associated with vesicular-arbuscular mycorrhizal (VAM) fungi. Mycorrhizal colonization of roots and the diversity and abundance of VAM species were determined at seven sites. Six sites received annual rainfall of 0–100 mm, varying widely from year to year. The seventh site experienced more predictable annual rainfall of 150–200 mm. Perennial vegetation was sparse at the six low-rainfall sites. Dry annual grasses from previous rain events were present at only three of these six sites and mean mycorrhizal colonization levels of W. mirabilis at these three sites were as high as 18%. W. mirabilis was not mycorrhizal at sites where grasses were absent. The seventh site, receiving higher rainfall, supported small trees and annual grasses in addition to W. mirabilis. Mycorrhizal colonization levels of W. mirabilis at this site were significantly higher than at the other six sites, closely paralleling those of the surrounding annual grasses. The mycorrhizal flora of W. mirabilis consisted of four Glomus species. These taxa were not unique to W. mirabilis, having been found with Stipagrostis and Cladoraphis grasses throughout the Namib and Kalahari deserts.  相似文献   

19.
Abstract Phytophthora cinnamomi (cinnamon fungus) is a pathogenic soil fungus that infects plant communities along the southeastern coast of Australia and the southwestern corner of Western Australia. Infection of native plant communities with P. cinnamomi regularly leads to dramatic changes in both the structural and the floristic characteristics of these communities. This study aimed to assess the effect of P. cinnamomi induced changes in plant community attributes upon the abundance and diversity of invertebrates in an area of open forest in the Brisbane Ranges, Victoria. Pitfall trapping was conducted continuously for 1 week within each season over a 3 year period. Invertebrates were sorted to order level, and abundances were compared between times (season and year) and infection status for taxa with normalized distributions (Coleoptera, Collembola, Dermaptera and ants). Non-parametric comparisons were made for other groups (Aranae, Blattodea, Diptera, Hemiptera, Orthoptera, ant ‘morpho-species’ and unidentified larvae) to assess differences on the basis of infection status. Significant differences on the basis of infection were uncommon and, where identified, elevated abundances were more commonly observed at sites infected by P. cinnamomi. Consistent temporal effects (season and year) were observed in normalized data sets. Abundances both within individual taxa and from pooled counts were generally weakly associated with ground-level habitat features. Overall, the impact of P. cinnamomi on vegetative structure and floristics was not reflected in different abundances of ground-dwelling invertebrates.  相似文献   

20.
Phytophthora cinnamomi (Pc) is an extremely destructive soil‐borne pathogen of Asiatic origin responsible for “ink disease” in chestnut. This work assesses the adaptive potential to the impact of Pc of four Spanish populations of Castanea sativa undergoing different selection pressures. To explore the evolvability of C. sativa to Pc in the selected populations, parameters obtained from neutral and functional genetic diversity were compared with estimates of quantitative genetic variability. Nine expressed sequence tags‐simple sequence repeat (EST‐SSR) markers were selected and their transferability and polymorphism in 137 C. sativa individuals were evaluated. To test the potential of EST‐SSR markers for early selection of Pc tolerant plant material, the offspring of selected individuals were challenged with Pc. Expressed sequence tags‐simple sequence repeat markers and seedling life expectancy after Pc inoculation revealed significant different responses of C. sativa populations to Pc. The genetic variability observed within populations showed the potential response capacity of Spanish C. sativa populations to undergo fast adaptive evolution. The heritability value obtained for the “life expectancy” variable (h2 = 0.21 ± 0.11) indicated that selection for resistance to Pc is possible. Genetic patterns reflected two evolutionarily meaningful groupings of populations, corresponding to the different selective pressure of the oomycete between sites. The differentiation coefficient obtained through markers classified as under neutral selection (FST = 0.185) was lower than the quantitative genetic differentiation of “life expectancy” between C. sativa populations (QST = 0.682), providing evidence that selection acted spatially in a heterogeneous manner. A first link has been identified in trees between population structure and adaptive responses to pathogen‐induced selection. The study identified one marker under positive selection that could be used in marker assisted selection to predict resistance to Pc in non‐inoculated C. sativa trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号