首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within < 50 cm of one another on the same rock surface. Unlike most previously studied clonal invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (Go) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite theoretical suggestions that philopatric dispersal combined with typically small effective population sizes should promote inbreeding in clonal species, inbreeding does not appear to contribute significantly to the population structure of A. rudyi. Genet genotype frequencies conformed to Hardy-Weinberg expectations in all populations, and inbreeding coefficients (f) were close to zero. In general, the population structure of A. rudyi did not differ significantly from that observed among outcrossing sexual species with philopatric larval dispersal. Age estimates suggest, however, that genets of A. rudyi live for many decades. Genet longevity may promote high genotypic diversity within A. rudyi populations and may be the most important evolutionary consequence of clonal reproduction in this species and the many others that share its dispersal characteristics.  相似文献   

2.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

3.
Local adaptation in response to fine-scale spatial heterogeneity is well documented in terrestrial ecosystems. In contrast, in marine environments local adaptation has rarely been documented or rigorously explored. This may reflect real or anticipated effects of genetic homogenization, resulting from widespread dispersal in the sea. However, evolutionary theory predicts that for the many benthic species with complex life histories that include both sexual and asexual phases, each parental habitat patch should become dominated by the fittest and most competitive clones. In this study we used genotypic mapping to show that within headlands, clones of the sea anemone Actinia tenebrosa show restricted distributions to specific habitats despite the potential for more widespread dispersal. On these same shores we used reciprocal transplant experiments that revealed strikingly better performance of clones within their natal rather than foreign habitats as judged by survivorship, asexual fecundity, and growth. These findings highlight the importance of selection for fine-scale environmental adaptation in marine taxa and imply that the genotypic structure of populations reflects extensive periods of interclonal competition and site-specific selection.  相似文献   

4.
Summary

Stichopus chloronotus (Brandt, 1835) is one among nine aspidochirotide holothurian species known to reproduce both sexually by broadcast spawning and asexually by transverse fission. New data on the sexual cycle of this species in La Réunion are presented here and information available on sexual and asexual reproduction in this species is summarised. Sexual reproduction on La Réunion shows a distinct seasonality with a main spawning period in the warm season (November-February). The spawning period the Great Barrier Reef appears to be at the same time. Some intriguing deviations from unity in sex-ratio, usually biased towards more male individuals, have been observed in both geographic regions (sex ratio at La Reunion 31:1). New data on the asexual reproduction of this species in La Réunion confirm the high rates of fission. The peak of asexual reproduction in both the Indian and Pacific Ocean was observed in winter (June-July). Thus, asexual reproduction in this species occurs outside the season for sexual reproduction. The rate of asexual reproduction appears to vary between sample locations. However, results of population genetic studies on S. chloronotus (Uthicke et al., 1999; Uthicke et al., 2001) indicated that in most populations investigated a maximum of about 60% of all individuals may be derived from sexual recruitment. Cluster analyses on genetic distances between populations grouped populations within Oceans together, with the exception of one sample from a nearshore reef of the GBR. Although genetic differences between the two regions exist, these are relatively small regarding the large geographic distance. We conclude that asexual reproduction in S. chloronotus is important to maintain local population sizes, but that larval exchange between populations mediated by sexual reproduction is important for colonisation of new areas and to provide connectivity between populations. Here, we present the first synthesis of these phenomena for a holothurian species.  相似文献   

5.
1. For a wide range of organisms, heritable variation in life-history characteristics has been shown to be strongly subject to selection, reflecting the impact that variation in characters such as genotypic diversity, duration of larval development and adaptations for dispersal can have on the fitness of offspring and the make-up of populations. Indeed, variation in life-history characteristics, especially reproduction and larval type, have often been used to predict patterns of dispersal and resultant population structures in marine invertebrates. 2. Scleractinian corals are excellent models with which to test this relationship, as they exhibit almost every possible combination of reproductive mode and larval type. Some general patterns are emerging but, contrary to expectations, genetic data suggest that while populations of broadcast spawning species may be genotypically diverse they may be heavily reliant on localized recruitment rather than widespread dispersal of larvae. 3. Here we use microsatellites to test the importance of localized recruitment by comparing the genetic structure of populations of two broadcast spawning corals with contrasting modes of reproduction and larval development; Goniastrea favulus is self-compatible, has sticky, negatively buoyant eggs and larvae and is expected to have restricted dispersal of gametes and larvae. In contrast, Platygyra daedalea is self-incompatibile, spawns positively buoyant egg-sperm bundles and has planktonic development. 4. Surprisingly, spatial-autocorrelation revealed no fine-scale clustering of similar genotypes within sites for G. favulus, but showed a non-random distribution of genotypes in P. daedalea. Both species showed similar levels of genetic subdivision among sites separated by 50-100 m (F(ST) = 0.03), suggesting that larval dispersal may be equivalent in both species. 5. Interestingly, as fragmentation has been considered rare in massive corals, our sample of 284 P. daedalea colonies included 28 replicated genotypes that were each unlikely (P < 0.05) to have been derived independently from sexual reproduction. 6. We conclude that the extreme life history of G. favulus does not produce unusually fine-scale genetic structure and subsequently, that reproductive mode and larval type may not be not good predictors of population structure or dispersal ability.  相似文献   

6.

We analysed the patterns of genetic variability of eastern Mediterranean populations of the scleractinian coral Cladocora caespitosa, from the Aegean and Levantine seas, using 19 polymorphic microsatellite loci, 11 of which were newly characterized. The observed genetic pattern reflects a scenario of isolation by environment: FST comparisons showed a higher degree of genetic differentiation between the two Cypriot populations that are separated by only 11 km than between these two Levantine populations and the Aegean population in Greece, which are separated by 1300 km. We hypothesize that local-scale oceanographic factors influenced the dispersal of planulae between the geographically close populations, playing a crucial role in the genetic structure of this coastal coral. Yet, despite being characterized as a species with limited dispersal and high self-recruitment, large-scale migration does eventually occur as first-generation migrants were identified between the most distant populations. In line with previous findings of reproductive plasticity in C. caespitosa, we also found localized differences in reproduction mode (sexual vs. asexual) within a geographically limited context. Several individuals were identified as clones, indicating the predominance of asexual reproduction in one of the Cypriot populations. We interpret this predominance either as a direct response to or as an indirect consequence of perturbations suffered by this C. caespitosa population. These perturbations are caused by unfavourable environmental conditions that threatened local survival, in particular water temperature changes and windstorm swells. Asexual reproduction may be a mechanism used by C. caespitosa to counteract mortality events and recolonize devastated areas, and likely accounts for the occasional high levels of clonality and low levels of genetic diversity. Local adaptations such as these should therefore be considered in conservation and management strategies to maintain and preserve the gene pool of this endangered species.

  相似文献   

7.
In species reproducing both sexually and asexually clones are often more common in recently established populations. Earlier studies have suggested that this pattern arises due to natural selection favouring generally or locally successful genotypes in new environments. Alternatively, as we show here, this pattern may result from neutral processes during species’ range expansions. We model a dioecious species expanding into a new area in which all individuals are capable of both sexual and asexual reproduction, and all individuals have equal survival rates and dispersal distances. Even under conditions that favour sexual recruitment in the long run, colonization starts with an asexual wave. After colonization is completed, a sexual wave erodes clonal dominance. If individuals reproduce more than one season, and with only local dispersal, a few large clones typically dominate for thousands of reproductive seasons. Adding occasional long‐distance dispersal, more dominant clones emerge, but they persist for a shorter period of time. The general mechanism involved is simple: edge effects at the expansion front favour asexual (uniparental) recruitment where potential mates are rare. Specifically, our model shows that neutral processes (with respect to genotype fitness) during the population expansion, such as random dispersal and demographic stochasticity, produce genotype patterns that differ from the patterns arising in a selection model. The comparison with empirical data from a post‐glacially established seaweed species (Fucus radicans) shows that in this case, a neutral mechanism is strongly supported.  相似文献   

8.
 Population genetic structure was studied in one nearshore and two offshore populations of Stichopus chloronotus, a common holothurian species on Indo-Pacific coral reefs. Genetic variation at five polymorphic loci was examined using allozyme electrophoresis. The nearshore population consisted almost exclusively of male individuals, and more males than females were found in all populations studied. Deviations of heterozygosity from that predicted under Hardy-Weinberg equilibrium indicated that asexual reproduction occurred in all populations. Estimates of the level of asexual reproduction using the ratios of the number of sexually produced individuals to sample size, observed genotypic diversity to expected genotypic diversity, and number of genotypes to sample size confirmed that this reproductive mode was more important at the nearshore reef compared to the two offshore reefs. There were large differences in genotypic frequencies between males and females. F-statistics on clonal genotypic frequencies were not statistically significant between populations for neither females or males, suggesting high dispersal of larvae between reefs. A higher mortality of females during larval or early post-settlement stages, or reduced dispersal capability of female larvae are the most likely reasons for biased sex ratios. Accepted: 23 November 1998  相似文献   

9.
The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within‐lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra‐ and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.  相似文献   

10.
Marine organisms exhibit great variation in reproductive modes, larval types, and other life-history traits that may have major evolutionary consequences. We measured local and regional patterns of genetic variation in corals along Australia's Great Barrier Reef to determine the relative contributions of sexual and asexual reproduction to recruitment and to infer levels of gene flow both locally (among adjacent sites, < 5 km apart) and regionally (among reefs separated by 500-1,200 km). We selected five common brooding species (Acropora cuneata, A. palifera, Pocillopora damicornis, Seriatopora hystrix, and Stylophora pistillata) and four broadcast spawners (Acropora hyacinthus, A. cytherea, A. millepora, and A. valida), which encompassed a wide range of larval types and potential dispersal capabilities. We found substantial genotypic diversity at local scales in six of the nine species (four brooders, two spawners). For these six, each local population displayed approximately the levels of multilocus genotypic diversity (Go) expected for outcrossed sexual reproduction (mean values of Go:Ge ranged from 0.85 to 1.02), although consistent single-locus heterozygous deficits indicate that inbreeding occurs at the scale of whole reefs. The remaining three species, the brooder S. hystrix and the spawners A. valida and A. millepora displayed significantly less multilocus genotypic diversity (Go) than was expected for outcrossed sexual reproduction (Ge) within each of several sites. Acropora valida and A. millepora showed evidence of extensive localized asexual replication: (1) a small number of multilocus (clonal) genotypes were numerically dominant within some sites (Go:Ge values were as low as 0.17 and 0.20): (2) single-locus genotype frequencies were characterized by both excesses and deficits of heterozygotes (cf. Hardy-Weinberg expectations), and (3) significant linkage disequilibria occurred. For the brooding S. hystrix Go:Ge values were also low within each of four sites (x = 0.48). However, this result most likely reflects the highly restricted dispersal of gametes or larvae, because levels of genetic variation among sites within reefs were extremely high (FSR = 0.28). For all species, we detected considerable genetic subdivision among sites within each reef (high FSR-values), and we infer that larval dispersal is surprisingly limited (i.e., Nem among sites ranging from 0.6 to 3.3 migrants per generation), even in species that have relatively long planktonic durations. Nevertheless, our estimates of allelic variation among reefs (FRT) also imply that for all four broadcast spawning species and three of the brooders, larval dispersal is sufficient to maintain moderate to high levels of gene flow along the entire Great Barrier Reef (i.e., Nem among reefs ranged from 5 to 31). In contrast, widespread populations of S. hystrix and S. pistilata (the two remaining brooders) are relatively weakly connected (Nem among reefs was 1.4 and 2.5, respectively). We conclude that most recruitment by corals is very local, particularly in brooders, but that enough propagules are widely dispersed to ensure that both broadcast spawning and brooding species form vast effectively panmictic populations on the Great Barrier Reef.  相似文献   

11.
Asexuality is an important mode of reproduction in eukaryotic taxa and has a theoretical advantage over sexual reproduction because of the increased ability to propagate genes. Despite this advantage, hidden signs of cryptic sex have been discovered in the genomes of asexual organisms. This has provided an interesting way to address the evolutionary impact of sex in plant and animal populations. However, the identification of rare sexual reproduction events in mainly asexual species has remained a challenging task. We examined the reproductive history in populations of the plant parasitic nematode Xiphinema index by genotyping individuals collected from six grapevine fields using seven microsatellite markers. A high level of linkage disequilibrium and heterozygous excess suggested a clonality rate of 95–100%. However, we also detected rare sexual reproduction events within these highly clonal populations. By combining highly polymorphic markers with an appropriate hierarchical sampling, and using both Bayesian and multivariate analysis with phylogenetic reconstructions, we were able to identify a small number of sexually produced individuals at the overlapping zones between different genetic clusters. This suggested that sexual reproduction was favoured when and where two nematode patches came into contact. Among fields, a high degree of genetic differentiation indicated a low level of gene flow between populations. Rare genotypes that were shared by several populations suggested passive dispersal by human activities, possibly through the introduction of infected plants from nurseries. We conclude that our method can be used to detect and locate sexual events in various predominantly asexual species.  相似文献   

12.
Host trees for obligate epiphytes are dynamic patches that emerge, grow and fall, and metacommunity diversity critically depends on efficient dispersal. Even though species that disperse by large asexual diaspores are strongly dispersal limited, asexual dispersal is common. The stronger dispersal limitation of asexually reproducing species compared to species reproducing sexually via small spores may be compensated by higher growth rates, lower sensitivity to habitat conditions, higher competitive ability or younger reproductive age. We compared growth and reproduction of different groups of epiphytic bryophytes with contrasting dispersal (asexual vs. sexual) and life history strategies (colonists, short- and long-lived shuttle species, perennial stayers) in an old-growth forest stand in the boreo-nemoral region in eastern Sweden. No differences were seen in relative growth rates between asexual and sexual species. Long-lived shuttles had lower growth rates than colonists and perennial stayers. Most groups grew best at intermediate bark pH. Interactions with other epiphytes had a small, often positive effect on growth. Neither differences in sensitivity of growth to habitat conditions nor differences in competitive abilities among species groups were found. Habitat conditions, however, influenced the production of sporophytes, but not of asexual diaspores. Presence of sporophytes negatively affected growth, whereas presence of asexual diaspores did not. Sexual species had to reach a certain colony size before starting to reproduce, whereas no such threshold existed for asexual reproduction. The results indicate that the epiphyte metacommunity is structured by two main trade-offs: dispersal distance vs. reproductive age, and dispersal distance vs. sensitivity to habitat quality. There seems to be a trade-off between growth and sexual reproduction, but not asexual. Trade-offs in species traits may be shaped by conflicting selection pressures imposed by habitat turnover and connectivity rather than by species interactions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
In dioecious species with both sexual and asexual reproduction, the spatial distribution of individual clones affects the potential for sexual reproduction and local adaptation. The seaweed Fucus radicans, endemic to the Baltic Sea, has separate sexes, but new attached thalli may also form asexually. We mapped the spatial distribution of clones (multilocus genotypes, MLGs) over macrogeographic (>500 km) and microgeographic (<100 m) scales in the Baltic Sea to assess the relationship between clonal spatial structure, sexual recruitment, and the potential for natural selection. Sexual recruitment was predominant in some areas, while in others asexual recruitment dominated. Where clones of both sexes were locally intermingled, sexual recruitment was nevertheless low. In some highly clonal populations, the sex ratio was strongly skewed due to dominance of one or a few clones of the same sex. The two largest clones (one female and one male) were distributed over 100–550 km of coast and accompanied by small and local MLGs formed by somatic mutations and differing by 1–2 mutations from the large clones. Rare sexual events, occasional long‐distance migration, and somatic mutations contribute new genotypic variation potentially available to natural selection. However, dominance of a few very large (and presumably old) clones over extensive spatial and temporal scales suggested that either these have superior traits or natural selection has only been marginally involved in the structuring of genotypes.  相似文献   

14.
Genetic variation in sexual and clonal lineages of a freshwater snail   总被引:3,自引:0,他引:3  
Sexual reproduction within natural populations of most plants and animals continues to remain an enigma in evolutionary biology. That the enigma persists is not for lack of testable hypotheses but rather because of the lack of suitable study systems in which sexual and asexual females coexist. Here we review our studies on one such organism, the freshwater snail Potamopyrgus antipodarum (Gray). We also present new data that bear on hypotheses for the maintenance of sex and its relationship to clonal diversity. We have found that sexual populations of the snail are composed of diploid females and males, while clonal populations are composed of a high diversity of triploid apomictic females. Sexual and asexual individuals coexist in stable frequencies in many ‘mixed’ populations; genetic data indicate that clones from these mixed populations originated from the local population of sexual individuals without interspecific hybridization. Field data show that clonal and sexual snails have completely overlapping life histories, but individual clonal genotypes are less variable than individuals from the sympatric sexual population. Field data also show segregation of clones among depth‐specific habitat zones within a lake, but clonal diversity remains high even within habitats. A new laboratory experiment revealed extensive clonal variation in reproductive rate, a result which suggests that clonal diversity would be low in nature without some form of frequency‐dependent selection. New results from a long‐term field study of a natural, asexual population reveal that clonal diversity remained nearly constant over a 10‐year period. Nonetheless, clonal turnover occurs, and it occurs in a manner that is consistent with parasite‐mediated, frequency‐dependent selection. Reciprocal cross‐infection experiments have further shown that parasites are more infective to sympatric host snails than to allopatric snails, and that they are also more infective to common clones than rare clones within asexual host populations. Hence we suggest that sexual reproduction in these snails may be maintained, at least in part, by locally adapted parasites. Parasite‐mediated selection possibly also contributes to the maintenance of local clonal diversity within habitats, while clonal selection may be responsible for the distribution of clones among habitats. © 2003 The Linnean Society of London. Biological Journal of the Linnean Society 2003, 79 , 165–181.  相似文献   

15.
Most plants can reproduce both sexually and asexually (or vegetatively),and the balance between the two reproductive modes may vary widely between and within species.Extensive clonal growth may affect the evolution of life history traits in many ways.First,in some clonal species,sexual reproduction and sex ratio vary largely among populations.Variation in sexual reproduction may strongly affect plant's adaptation to local environments and the evolution of the geographic range.Second,clonal growth can increase floral display,and thus pollinator attraction,while it may impose serious constraints and evolutionary challenges on plants through geitonogamy that may strongly influence pollen dispersal.Geitonogamous pollination can bring a cost to plant fitness through both female and male functions.Some co-evolutionary interactions,therefore,may exist between the spatial structure and the mating behavior of clonal plants.Finally,a trade-off may exist between sexual reproduction and clonal growth.Resource allocation to the two reproductive modes may depend on environmental conditions,competitive dominance,life span,and genetic factors.If different reproductive modes represent adaptive strategies for plants in different environments,we expect that most of the resources should be allocated to sexual reproduction in habitats with fluctuating environmental conditions and strong competition,while clonal growth should be dominant in stable habitats.Yet we know little about the consequence of natural selection on the two reproductive modes and factors which control the balance of the two reproductive modes.Future studies should investigate the reproductive strategies of clonal plants simultaneously from both sexual and asexual perspectives.  相似文献   

16.
《Journal of bryology》2013,35(1):66-70
Abstract

Reproductive ecological traits such as success of fertilization, partitioning of sexes, the relative success of sexual versus asexual reproduction and dispersal distances are likely to considerably influence genetic structure within and among plant populations. In the liverwort Mannia fragrans both sexual and asexual reproduction can be frequently observed: sporophytes are produced abundantly every year and asexual propagation by fragmentation of thalli is also common. The aim of this study was to use ecological and molecular methods (ISSR markers) to separate the role of sexual and asexual components in shaping the partitioning of genetic variability within and among populations. In addition to genetic analyses conducted seasonally, sex expression and fertilization rates, sex ratios, regeneration from vegetative fragments and outcrossing was estimated in 3 populations of the species. Sex expression rates were high and, in spite of strongly female biased sex ratios, high fertilization rates were detected. However, capacity for regeneration from fragments was also high. Despite frequent spore production genetic diversity was low within populations. This is probably the result of the predominance of asexual reproduction s. 1. including crossing between genetically identical plants. Although recombination and mutation occasionally generates new haplotypes, these have little chance to spread because of the large spores mainly falling into their own patch, where chances for germination are low. Due to small size and isolation of the populations, genetic drift is likely to eliminate these haplotypes. Remote populations differed significantly, each being dominated by a few clones, reflecting negligible gene flow among them. Differences among individual populations can partly be related to differences in their reproductive behaviour and degree of isolation.  相似文献   

17.
Cyclical parthenogens, including aphids, are attractive models for comparing the genetic outcomes of sexual and asexual reproduction, which determine their respective evolutionary advantages. In this study, we examined how reproductive mode shapes genetic structure of sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) populations of the aphid Rhopalosiphum padi by comparing microsatellite and allozyme data sets. Allozymes showed little polymorphism, confirming earlier studies with these markers. In contrast, microsatellite loci were highly polymorphic and showed patterns very discordant from allozyme loci. In particular, microsatellites revealed strong heterozygote excess in asexual populations, whereas allozymes showed heterozygote deficits. Various hypotheses are explored that could account for the conflicting results of these two types of genetic markers. A strong differentiation between reproductive modes was found with both types of markers. Microsatellites indicated that sexual populations have high allelic polymorphism and heterozygote deficits (possibly because of population subdivision, inbreeding or selection). Little geographical differentiation was found among sexual populations confirming the large dispersal ability of this aphid. In contrast, asexual populations showed less allelic polymorphism but high heterozygosity at most loci. Two alternative hypotheses are proposed to explain this heterozygosity excess: allele sequence divergence during long-term asexuality or hybrid origin of asexual lineages. Clonal diversity of asexual lineages of R. padi was substantial suggesting that they could have frozen genetic diversity from the pool of sexual lineages. Several widespread asexual genotypes were found to persist through time, as already seen in other aphid species, a feature seemingly consistent with the general-purpose genotype hypothesis.  相似文献   

18.
Asexual reproduction in the fissiparous holothurian species Stichopus chloronotus from eight populations between Madagascar and the Great Barrier Reef (total N=149) was investigated using Amplified fragment length polymorphism (AFLP) markers; and results compared to previous allozyme studies. Specifically, we tested the hypotheses that (1) genetic diversity in this species is reduced in the West Indian Ocean and that (2) some populations rely nearly exclusively on asexual reproduction. Using 21 polymorphic markers (obtained by two primer combinations) resulted in 51 genotypes in the whole sample, with up to 20 individuals (nearly all within populations) having the same genotype. These repeated genotypes most likely represent clones. In most populations, more than 50% of individuals were inferred to result from asexual reproduction. In two extreme populations, both of which are comprised nearly entirely of male individuals (Great Palm Island, Trou deau), only up to 20% of all individuals were sexually produced. Although, the genetic diversity in two populations of La Réunion was reduced, the fact that diversity is high in a third population and on Madagascar showed that low genetic diversity in S. chloronotus is not a general feature of the West Indian Ocean. Cluster analysis using Rogers genetic distance did not result in distinct geographic clusters. This supports previous suggestions that although asexual reproduction is important for the maintenance of populations, large distance dispersal of sexually produced larvae provides the genetic link between populations.  相似文献   

19.
Transitions from sexual to asexual reproduction are often coupled with elevations in ploidy. As a consequence, the importance of ploidy per se for the maintenance and spread of asexual populations is unclear. To examine the effects of ploidy and asexual reproduction as independent determinants of the success of asexual lineages, we sampled diploid sexual, diploid asexual, and triploid asexual Eucypris virens ostracods across a European wide range. Applying nuclear and mitochondrial markers, we found that E. virens consists of genetically highly differentiated diploid sexual populations, to the extent that these sexual clades could be considered as cryptic species. All sexual populations were found in southern Europe and North Africa and we found that both diploid asexual and triploid asexual lineages have originated multiple times from several sexual lineages. Therefore, the asexual lineages show a wide variety of genetic backgrounds and very strong population genetic structure across the wide geographic range. Finally, we found that triploid, but not diploid, asexual clones dominate habitats in northern Europe. The limited distribution of diploid asexual lineages, despite their shared ancestry with triploid asexual lineages, strongly suggests that the wider geographic distribution of triploids is due to elevated ploidy rather than to asexuality.  相似文献   

20.
There is growing evidence that transitions from sexual to asexual reproduction are often provoked by internal genetic factors rather than extrinsic selection pressures. In the cladoceran crustacean Daphnia pulex, the shift to asexuality has been linked to sex-limited meiosis suppression. Most populations of this species reproduce by obligate parthenogenesis, but cyclically parthenogenetic populations persist in the southern portion of its range. The meiosis-suppressor model predicts that asexuality in D. pulex has polyphyletic origins and that the coexistence of cyclically parthenogenetic lines with male-producing obligately asexual clones should be unstable. For the present study, we examined the genotypic structure of D. pulex populations from a region in which there is an abrupt microgeographical shift in breeding system. Populations in Michigan largely reproduce by cyclic parthenogenesis, while those in Ontario are obligately asexual. Allozyme studies on 77 populations from this area revealed 50 obligately asexual clones, divisible into two groups: one derived from a single parent species and the other derived via interspecific hybridization. Although nearly 50% of the clones retained male production, there was, as predicted, no evidence of coexistence between cyclically parthenogenetic populations and male-producing obligately asexual clones. The survey did, however, reveal a low incidence of cyclically parthenogenetic populations in Ontario. The high genotypic diversity of these populations suggests that they are not only resistant to meiosis suppression, but able to rework genetic variation gained from asexual clones into a sexual breeding system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号