首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Peridinium balticum (Pyrrhophyta) exists as a symbiosis between a nonphotosynthetic dinoflagellate host and a chlorophyll c-containing alga. It is hypothesized that P. balticum is an evolutionary link between primitive nonphotosynthetic and advanced photosynthetic dinoflagellates. This study documents pre- and postfertilization events of sexual reproduction in this unusual dinoflagellate for the first time. Light microscopy and TEM observations showed that gametes resemble vegetative cells except in the organization of their chloroplasts. Fusion of gametes occurred in a specific orientation, i.e., apical to sulcal area. The presence of an intact membrane between fusing pairs prior to plasmogamy was suggestive of enzymatic digestion of plates during fertilization. Rupture of this membrane triggers plasmogamy and karyogamy of the host, followed by that of the algal symbiont. A discussion of the cellular processes involved in gamete formation, fertilization, and zygote development is presented. The results of this investigation demonstrate that a synchronous sexual reproduction cycle has evolved for the symbiont and its dinoflagellate host.  相似文献   

2.
An examination of the pigments of the binucleate dinoflagellate Peridinium balticum (Levander) Lemmerman revealed the presence of chlorophylls a, c1 and c2 and the carotenoids: fucoxanthin (most abundant), diadinoxanthin, diatoxanthin, an unidentified fucoxanthin-like xanthophyll, β-carotene, γ-carotene and astaxanthin. A comparison of the pigments of P. balticum and P. foliaceum (Stein) Biecheler, also a binucleate dinoflagellate, demonstrated similar compositions. However P. balticum lacked the β-carotene precursors (e.g. phytoene) which accumulated outside the chloroplast in P. foliaceum. This study indicates that P. balticum and P. foliaceum are closely related; each species is a heterotrophic dinoflagellate with a photosynthetic endosymbiont taxonomically affiliated with the Chrysophyta (Chrysophyceae or Bacillariophyceae).  相似文献   

3.
Dieter Volkmann 《Planta》1981,151(2):180-188
The peripheral secretion tissue of the root cap of Lepidium sativum L. was investigated by electronmicroscopy and freeze-fracturing in order to study structural changes of membranes involved in the secretion process of polysaccharide slime. Exocytosis of slime-transporting vesicles occurs chiefly in the distal region of the anticlinal cell walls. The protoplasmic fracture face (PF) of the plasmalemma of this region is characterized by a high number of homogenously distributed intramembranous particles (IMPs) interrupted by areas nearly free of IMPs. Near such areas slime-transporting vesicles are found to be underlying the plasma membrane. It can be concluded that areas poor in particles are prospective sites for membrane fusion. During the formation of slime-transporting vesicles, the number of IMPs undergoes a striking change in the PF of dictyosome membranes and their derivatives. It is high in dictyosome cisternae and remarkably lower in the budding region at the periphery of the cisternae. Slime-transporting vesicles are as poor in IMPs as the areas of the plasmalemma. Microvesicles rich in IMPs are observed in the surroundings of dictyosomes. The results indicate that in the plasmalemma and in membranes of the Golgi apparatus special classes of proteins — recognizable as IMPs — are displaced laterally into adjacent membrane regions. Since the exoplasmic fracture face (EF) of these membranes is principally poor in particles, it can be concluded that membrane fusion occurs in areas characterized by a high quantity of lipid molecules. It is obvious that the Golgi apparatus regulates the molecular composition of the plasma membrane by selection of specific membrane components. The drastic membrane transformation during the formation of slime-transporting vesicles in the Golgi apparatus causes the enrichment of dictyosome membranes by IMPs, whereas the plasma membrane probably is enriched by lipids. The structural differentiations in both the plasma membrane and in Golgi membranes are discussed in relation to membrane transformation, membrane flow, membrane fusion, and recycling of membrane constituents.Abbreviations PF protoplasmic fracture face - EF exoplasmic fracture face - IMP intramembranous particle  相似文献   

4.
The fine structure of the binucleate, fucoxanthin-containing dinoflagellate Peridinium foliaceum (Stein) Biechler was re-examined for evidence of an endosymbiout. The eucaryotic nucleus, chloroplasts and associated ribosome-dense cytoplasm were separated by a single invaginating membrane from the rest of the dinoflagellate cell. The triple membrane-enclosed eyespot, mesocaryotic nucleus, trichocysts and accumulation bodies resided in the dinoflagellate cytoplasm. These observations suggest that P. foliaceum contains a membrane-bound endosymbiont, similar to that already described for the closely related species. P. balticum (Levander) Lemmermann.  相似文献   

5.
The distribution of intramembranous particles (IMPs) and membrane filipin-sterol complexes (FSC) was examined ultrastructurally in mouse spermatozoa from the male reproductive tract and ejaculates. IMPs were qualitatively analyzed on freeze-fracture replicas of glutaraldehyde-fixed tissue, while membrane FSC were quantitatively analyzed on replicas of filipin-treated cells. The distribution pattern of IMPs of mouse spermatozoa was fundamentally similar to that of other mammalian spermatozoa. 1) In the head, the plasma membrane had a heterogeneous population density, e.g., few IMPs on the acrosomal region, particularly few on the marginal segment, and somewhat regularly arranged IMPs on the postacrosomal region. The acrosomal membrane had many IMPs in hexagonal arrays. The nuclear membrane had many IMPs on the P-face, few IMPs on the variegated E-face, and an intense population density on the P-face of the basal plate. 2) In the neck, the plasma membrane had many IMPs with square arrangements of small IMPs in some areas on the P-face; the redundant nuclear membrane had a few IMPs on both P- and E-faces. 3) In the tail, the plasma membrane had diagonal rows of IMPs in some areas amongst larger IMPs on the middle piece, while it had "zippers" composed of IMPs running parallel to the axis on the principal piece. The distribution of sperm membrane FSC may be summarized as follows: 1) In the head, the acrosomal plasma membrane, which was heavily labeled with filipin, had much more FSC in the equatorial segment than in the marginal segment throughout the study. The postacrosomal plasma membrane generally had no FSC, but some sperm in ejaculates were slightly positive to filipin. The acrosomal membranes (both outer and inner) had no FSC. The nuclear membrane in the main part of the head had less FSC in vas deferens and ejaculated sperm than in the epididymal sperm. The nuclear membrane on the basal plate had no FSC. 2) In the neck, the plasma membrane had little FSC. The redundant nuclear envelope had scattered FSC with a higher incidence in the epididymal sperm than in those from the vas deferens and ejaculates. The membrane scroll, which was elongated from the extreme caudal end of the redundant nuclear envelope, had abundant FSC in the vas deferens and ejaculated sperm. 3) The tail plasma membrane (both middle and principal piece), which was weakly labeled with filipin, had less FSC in sperm from the vas deferens and ejaculates than in those from the epididymis. The limiting membrane covering the mitochondria had no FSC.  相似文献   

6.
The supramolecular organization of the plasma membrane of apical cells in shoot filaments of the marine red alga Porphyra yezoensis Ueda (conchocelis stage) was studied in replicas of rapidly frozen and fractured cells. The protoplasmic fracture (PF) face of the plasma membrane exhibited both randomly distributed single particles (with a mean diameter of 9.2 ± 0.2 nm) and distinct linear cellulose microfibril-synthesizing terminal complexes (TCs) consisting of two or three rows of linearly arranged particles (average diameter of TC particles 9.4 plusmn; 0.3 nm). The density of the single particles of the PF face of the plasma membrane was 3000 μm?2, whereas that of the exoplasmic fracture face was 325 μm?2. TCs were observed only on the PF face. The highest density of TCs was at the apex of the cell (mean density 23.0 plusmn; 7.4 TCs μm?2 within 5 μm from the tip) and decreased rapidly from the apex to the more basal regions of the cell, dropping to near zero at 20 μm. The number of particle subunits of TCs per μm2 of the plasma membrane also decreased from the tip to the basal regions following the same gradient as that of the TC density. The length of TCs increased gradually from the tip (mean length 46.0 plusmn; 1.4 nm in the area at 0–5 μm from the tip) to the cell base (mean length 60.0 plusmn; 7.0 μm in the area at 15–20 μm). In the very tip region (0–4 μm from the apex), randomly distributed TCs but no microfibril imprints were observed, while in the region 4–9 μm from the tip microfibril imprints and TCs, both randomly distributed, occurred. Many TCs involved in the synthesis of cellulose microfibrils were associated with the ends of microfibril imprints. Our results indicate that TCs are involved in the biosynthesis, assembly, and orientation of cellulose microfibrils and that the frequency and distribution of TCs reflect tip growth (polar growth) in the apical shoot cell of Porphyra yezoensis. Polar distribution of linear TCs as “cellulose synthase” complexes within the plasma membrane of a tip cell was recorded for the first time in plants.  相似文献   

7.
Summary The trophotaenial absorptive cells (TACs) in goodeid embryos facilitate nutrient absorption during prolonged periods of intraovarian gestation. In a study of membrane differentiations associated with solute and ligand transfer in the trophotaeniae of Xenotoca eiseni, embryos were incubated in vivo with cationized ferritin (CF) prior to freeze-cleaving. This exposure to high concentrations of an adsorptive ligand was meant to induce swelling of the endosomal compartment. Macromolecular trafficking in TACs occurs via an apical endocytic complex consisting of plasma membrane invaginations, a large population of small vesicles, uniformly thick apical tubules, and endosomes. Freeze-fracture replicas showed that the microvillar plasma membrane P-face of TACs was studded with intramembrane particles (IMPs) at a fairly high density, whereas that of the cell surface proper contained a distinctly lower density and the tubulovesicular endocytic pits contained almost no IMPs. The majority of small vesicles and apical tubules in a near surface position displayed P-fracture faces with only a few odd IMPs, indicating that membrane, shuttling between the apical plasma membrane and intracellular sorting organelles, obviously does not carry along many large-sized integral membrane proteins. The distended endosomal compartment had many P-face-associated particles primarily clustered into patches. Specializations of the lateral plasma membrane included 4–8 tight junctional strands, relatively large complements of gap junction proteins, and numerous plaques of desmosomal membrane particles. A system of lamellar cisternae underlay the lateral cell surface that was in continuity with the intraepithelial space by numerous tubular canals, giving rise to an intracellular amplification of the basolateral plasma membrane. Their outward openings appeared as tiny pits on the cytoplasmic faces of freeze-cleaved cell membrane. The density of IMPs on the P-faces of the surface plasma membrane was apparently lower than that on its invaginated lamellar complex. Hence, it is concluded that the mobility of integral membrane proteins in the plane of the membrane may be hampered in movement across the surface pores.Supported by the Deutsche Forschungsgemeinschaft (Schi 268/1-1)  相似文献   

8.
Dieter Volkmann 《Planta》1984,162(5):392-403
Growing root hairs of cress (Lepidium sativum L.) were investigated using freeze-fracture and electron-microscopic techniques. Three zones of differentiation could be detected: the tip zone, the zone of vacuolation and the foot zone. Corresponding to these zones, the plasmatic fracture face of the plasma membrane showed areas of pronounced differentiation with respect to the distribution and frequency of intramembranous particles (IMPs). The tip zone was characterized by an irregular fracture plane caused by a large number of blisters which were more or less free of IMPs. These blisters coincided in size and shape with Golgi vesicles accumulated in the ground cytoplasm near the very tip. Outside these blisters, IMPs were randomly distributed. The surrounding cell wall was very thin and mainly composed of amorphous material. The plasma membrane of the vacuolation zone often revealed areas of hexagonally ordered particles (HOPS). Such patterns of particles were observed in chemically fixed and unfixed root hairs with a maximum surface density of 1200 HOPS per area. Mostly, however, 15–50 HOPS per area were found. The number of such areas increased with increasing distance from the tip up to five areas per m2. Additionally, imprints of large cellulose microfibrils could be detected in unfixed material; they were mainly parallel to the root-hair axis and sometimes ended in areas of HOPS. However, HOPS were observed only in approximately 60% of the root hairs. Otherwise, large areas free of IMPs were interspersed between areas of randomly distributed IMPs. The particle frequency was relatively low and varied greatly in the tip as well as in the vacuolation zone, that is, from 1200 to 2000 IMPs m-2. Finally, the plasma membrane of the foot zone showed a very constant number of approx. 2000 IMPs m-2. These particles were mainly distinct and randomly distributed. In this zone, HOPS were never observed in spite of the fact that the cell wall was composed of numerous parallel-running cellulose microfibrils. Since membrane material is mainly incorporated in the tip zone where IMPs are statistically distributed, the results indicate that the plasma membrane of the outgrowing part of the root-hair cells is characterized by a high lateral mobility of its components. Furthermore, they indicate that specifically arranged particles are involved in the synthesis of cellulose microfibrils. These areas of HOPS seem to be locally restricted and — or limited with respect to their lifetime.Abbreviations cmf(s) cellulose microfibril(s) - EF extraplasmatic fracture face - HOPS hexagonally ordered particles - IMP intramembranous particle - PF plasmatic fracture face - pm plasma membrane Dedicated to Professor Dr. Kurt Mühlethaler, Zürich, on the occasion of his 65th birthday  相似文献   

9.
Two strains of Trichomonas vaginalis, JH162A, with low pathogenicity, and Balt 44, with high pathogenicity, as well as one highly pathogenic strain, KV-1, of Tritrichomonas foetus were studied by freeze-fracture electron microscopy. The protoplasmic faces (PFs) of the cell membranes of all three strains of both species had similar numbers of intramembranous particles (IMPs); however, the particles in the external faces (EFs) of these membranes were least abundant in Trichomonas vaginalis strain Balt 44 and most numerous in those of strain JH162A of this species. In Tritrichomonas foetus strain KV-1 the number of IMPs in the EF was close to but somewhat lower than that in the mild strain of the human urogenital trichomonad. In both species, the anterior, but not the recurrent, flagella had rosette-like formations, consisting of ~9 to 12 IMPs on both the PFs and EFs. The numbers and distribution of the rosettes appeared to vary among different flagella and in different areas of individual flagella of a single organism belonging to either species. The freeze-fracture electron micrographs provided a more complete understanding of the fine structure of undulating membranes of Trichomonadinae, as represented by Trichomonas vaginalis, and of Tritrichomonadinae (the Tritrichomonas augusta-type), as exemplified by Tritrichomonas foetus, than was gained from previous transmission and scanning electron microscope studies. Typically three longitudinal rows of IMPs on the PF of the recurrent flagellum of Trichomonas vaginalis were noted in the area of attachment of this flagellum to the undulating membrane. The functional aspects of the various structures and differences between certain organelles revealed in the two trichomonad species by the freeze-fracture method are discussed.  相似文献   

10.
Using filipin as a probe for the presence of membrane cholesterol, the evolution of cholesterol distribution in the apical plasma membrane was studied during estrogen-induced ciliogenesis in quail oviduct and compared with the distribution of intramembrane particles (IMPs). Ciliary growth is preceded by the first step of microvillus differentiation. Microvilli emerge in membrane domains rich in IMPs and devoid of filipin-cholesterol (f-c) complexes. However growing microvillus membrane shows f-c complexes. During ciliary growth, microvilli lengthen from 0.5 to 2 microns, indicating that the microvillar membrane is not a membrane reservoir for ciliogenesis. During ciliary growth, the characteristic ciliary necklace IMP rows appear progressively at the base of cilia. The first IMP row is organized in a membrane circlet lacking of f-c complexes, whereas the new shaft membrane in the middle of the circlet exhibits numerous complexes. These two different domains of the cilia keep their specificity during ciliary growth. Only the ciliary tip shows fewer complexes than the shaft membrane. The apical membrane of differentiated ciliated cells is thus composed of various domains, the ciliary shaft full of f-c complexes and poor in IMPs, the ciliary necklace is devoid of f-c complexes and rich in IMPs, the microvilli membrane is rich in both IMPs and f-c complexes, and the interciliary membrane is poor in both f-c complexes and IMPs, whereas the undifferentiated cells exhibit an apical membrane in which f-c complexes and IMPs are distributed homogeneously.  相似文献   

11.
High-resolution microscopy has been used to investigate the mechanism of the migration of cytoplasmic droplets during epididymal maturation of guinea pig spermatozoa. On testicular spermatozoa, droplets are located at the neck and, after passage through the middle cauda epididymidis, migrate only as far as the center of the midpiece. Initially, the space between the plasma membrane and outer mitochondrial membranes outside the droplet is 30.8±11.0 nm, whereas on mature spermatozoa, it significantly (P<0.01) narrows to a more consistent 15.9±1.3 nm. This is accompanied by the appearance of thin filaments cross-linking the two membranes above and below the droplet. Changes also occur in the arrangement of intramembranous particles (IMPs) in the plasma membrane overlying the midpiece. At the spermatid stage, linear arrays of IMPs are absent but appear on immature spermatozoa, where they are short with an irregular orientation, in the epididymis. On mature spermatozoa, numerous parallel linear arrays are present at the region where the plasma membrane adheres to the mitochondria. The membrane adhesion process can thus be observed two-dimensionally. The initial migration of the droplet from the neck is probably attributable to diffusion, with the formation of cross-linking filaments between the two membranes in the proximal midpiece preventing any backward flow and squeezing the droplet distally until it is arrested at the central midpiece by the filaments formed in the distal midpiece. The filaments might also stabilize the flagellum against hypo-osmotic stress encountered during ejaculation and within the female tract.  相似文献   

12.
Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4°C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species.  相似文献   

13.
The changes in membrane structure of rabbit polymorphonuclear (PMN) leukocytes during bacterial phagocytosis was investigated with scanning electron microscope (SEM), thin-section, and freeze-fracture techniques. SEM observations of bacterial attachment sites showed the involvement of limited areas of PMN membrane surface (0.01-0.25μm(2)). Frequently, these areas of attachment were located on membrane extensions. The membrane extensions were present before, during, and after the engulfment of bacteria, but were diminished in size after bacterial engulfment. In general, the results obtained with SEM and thin-section techniques aided in the interpretation of the three-dimensional freeze-fracture replicas. Freeze-fracture results revealed the PMN leukocytes had two fracture faces as determined by the relative density of intramembranous particles (IMP). Membranous extensions of the plasma membrane, lysosomes, and phagocytic vacuoles contained IMP's with a distribution and density similar to those of the plasma membrane. During phagocytosis, IMPs within the plasma membrane did not undergo a massive aggregation. In fact, structural changes within the membranes were infrequent and localized to regions such as the attachment sites of bacteria, the fusion sites on the plasma membrane, and small scale changes in the phagocytic vacuole membrane during membrane fusion. During the formation of the phagocytic vacuole, the IMPs of the plasma membrane appeared to move in with the lipid bilayer while maintaining a distribution and density of IMPs similar to those of the plasma membranes. Occasionally, IMPs were aligned to linear arrays within phagocytic vacuole membranes. This alignment might be due to an interaction with linearly arranged motile structures on the side of the phagocytic vacuole membranes. IMP-free regions were observed after fusion of lysosomes with the phagocytic vacuoles or plasma membrane. These IMP-free areas probably represent sites where membrane fusion occurred between lysosomal membrane and phagocytic vacuole membrane or plasma membrane. Highly symmetrical patterns of IMPs were not observed during lysosomal membrane fusion.  相似文献   

14.
Summary Oocytes of the toad Bufo marinus have been studied by means of thin section and particularly freeze-fracture electron microscopy to characterize the cytoplasmic membranes around the yolk organelle, and the storage of yolk material in precursors and platelets. This appears to be a previously unknown type of yolk-platelet formation. During yolk-organelle development from the primordial precursor to the bi-partite fully grown yolk platelet, numerous lipoid droplets are attached to the periphery of the platelet, indicating an intense uptake of lipids. As is typical for amphibians, the fully grown yolk platelet has a crystalline internum covered by a dense osmiophilic externum, and the whole organelle is enveloped by a plasma membrane that shows no direct connection or fusion with endocytotic vesicles. The yolk membrane exhibits few intramembraneous particles (IMPs) at the core areas and some more where it borders fields of lipoid droplets. Here the IMPs show a net-like arrangement in the furrows between adjacent droplets.  相似文献   

15.
The ultrastructure of Peridinium balticum indicates that an eudosymbiont is present within the dinoflagellate. The structure and probable function of the organelles of both protists arc described and discussed. The origin of photosynthetic dinoflagellates from heterotrophic forms by means of a chrysophyte-like endosymbiont is postulated.  相似文献   

16.
We examined the effect of a local anesthetic, dibucaine, on the plasma membrane of Tetrahymena pyriformis strain NT-1 using freeze-fracture electron microscopy. Intramembranous particles (IMPs) were distributed homogeneously on the plasma membrane of untreated cells. But, when Tetrahymena cells had been treated with 1.3 mM dibucaine for 5 min at growth temperature, freeze-fracture micrographs of the plasma membrane showed marked alterations. Although IMPs showed an almost homogeneous distribution, their density was elevated markedly on the protoplasmic fracture (PF) face but greatly reduce on the exoplasmic fracture (EF) face. Areas around deciliated portions had a reverse IMP density distribution for the PF and EF faces. These results suggest that dibucaine induced vertical displacement of the IMPs in the plasma membrane.  相似文献   

17.
Summary Freeze-fracture followed by deep-etch was used with transmission electron microscopy to characterize and compare the periplasts of two cryptomonads,Cryptomonas ovata andC. cryophila. The periplast ofC. ovata consists of a dense surface mat of granular/fibrillar material overlying a series of polygonal plates attached to the undersurface of the plasma membrane (PM) at their upturned edges. Fracture faces of the PM reveal a highly stable substructure with distinct patterns of intra-membrane particles (IMPs) associated with the underlying plates; a role for the PM in plate development is indicated. The surface periplast component ofC. cryophila exhibits a cover of morphologically complex, overlapping heptagonal scales (termed rosette scales) in addition to elongate fibrils. The arrangement of IMPs within the PM is predominantly random and the inner periplast component consists of a sheet with regular pores where ejectisomes are located. The sheet does not appear closely associated with the PM. The combination of features exhibited by the periplast ofC. cryophila warrants its inclusion as a new type within theCryptophyceae.  相似文献   

18.
The anterior sternal epithelium of terrestrial isopods transports cuticular Ca2+ to and from large sternal CaCO3 deposits. We analyzed the anterior and posterior sternal epithelium by the means of the freeze-etch technique and measured the size distribution and density of intramembrane particles (IMPs) during three different molting stages. At least three IMP size classes around 4.5, 7.7, and 9.4 nm can be distinguished on the P-face of the apical and basolateral plasma membrane. An additional size class of around 12.8 nm is restricted to the apical compartment. In the anterior sternal epithelium, the density of these large particles changes by a factor of 1.9 during the molt cycle, suggesting a role in CaCO3 formation and/or resorption. The density of the smaller IMPs rises transiently by a factor of 1.3 in the posterior sternal epithelium only. The IMP density of the basolateral plasma membrane increases significantly by a factor of 1.4 and 1.3 in the anterior and posterior sternal epithelia, respectively. The results indicate that increases in the IMP density contribute to the differentiation to an increased transport activity during the cyclic enlargements of the plasma membrane surface area in the anterior sternal epithelium.  相似文献   

19.
Freeze-fracture electron microscopy of the plasma membrane of the fertilized, uncleaved Xenopus egg shows that intramembranous particles (IMPs) range in size from ca. 50 to 200 Å and that more IMPs are attached to the E-face than to the P-face. The overall IMP densities of the animal and the vegetal hemisphere do not differ significantly. IMP-free regions (?, ca. 0.1 μm) on the tips of surface protrusions were irregularly distributed in the animal and the vegetal half (E-face) occupying ca. 8.5 and 2%, respectively of the free area. The relative densities for 16 different IMP sizes have been compared, on the basis of seven animal and seven vegetal halves, counting (E-faces only) ca. 10,000 IMPs in each hemisphere. For IMP sizes of ≤81 Å, a significant difference (P < 0.0005) was found, more small IMPs being present in the animal half. Some evidence for IMP-associated thin elements was found. These findings are discussed in relation to plasma membrane anisotropy and the morphogenetic role of the egg cortex.  相似文献   

20.
Chromatin from a uninucleate dinoflagellate, Crypthecodinium cohnii, a binucleate dinoflagellate, Peridinium balticum, and a chromophyte, Olisthodiscus luteus, was examined by nuclease digestion and the results were compared to those from vertebrates. Gel analysis of the products of staphylococcal (micrococcal) nuclease digestion revealed a DNA repeat unit of 220(±5) base pairs for O. luteus and 215(±5) for P. balticum. Limit digestion gave a core particle of 140 base pairs, revealing that these longer repeat sizes are due to longer linker regions. No repeating subunit structure was found upon electrophoresis of digests of C. cohnii nuclei. Examination of the DNA fragments produced by DNAse I digestion of nuclei isolated from P. balticum and O. luteus showed the same ladder of ten base multiples as seen in chromatin from other eukaryotes. Examination of the kinetics of digestion by DNAse II of Peridinium chromatin revealed less susceptibility when compared to DNAse I digestions while 70% of Olisthodiscus chromatin and 35% of C. cohnii chromatin was sensitive to DNAse II. These data, taken together with previous results from Euglena, indicate that while algal chromatin is similar to that of higher eukaryotes in regard to DNAse I and II action, it differs in that the linker DNA is longer. In addition, the Hl-like histone from O. luteus and P. balticum is located in the linker DNA as in higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号