首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reviewed what we had learned about the regulation of the δ1-crystallin gene through experiments using gene transfer techniques [Kondoh et al. (1986) Cell Differ. 19, 151–160]. It was concluded then that regulatory genetic elements for the lens-specific expression are associated with the δ1-crystallin gene, and that these chicken elements properly function in mammalian cells. In the last couple of years, we have made significant progress in the understanding of lens-specific δ-crystallin expression. This is owing to success in transgenesis of mouse with the δ1-crystallin gene and in functional dissection of the gene which led us to the discovery of an intragenic enhancer as the major determinant for lens-specific expression. In this article, we summarize these recent advances.  相似文献   

2.
3.
4.
5.
The lens-specific reglatory element of the delta 1-crystallin enhancer lies within the core segment (Goto et al., (1990) Mol. Cell. Biol. 10, 935-964). The element was allocated within the 55 bp long HN fragment of the core. Block-wise base substitutions were introduced to the 55 bp and their effect on the enhancer activity of the multimers in lens cells was examined. By base sequence alteration of either of the contiguous blocks 5 and 6, with their original sequence of TTGCT and CACCT, respectively, enhancer activity was totally lost. A lens nuclear factor delta EF1 was found which bound specifically to the base sequences defined by the blocks. DNA binding activity very similar to delta EF1 was also found in extracts of tissues other than lens, suggesting that delta EF1 participates in lens-specific regulation through tissue-dependent modification or interaction with other factors.  相似文献   

6.
7.
The alphaB-crystallin/small heat shock protein gene is expressed very highly in the mouse eye lens and to a lesser extent in many other nonocular tissues, including the heart, skeletal muscle and brain. Previously we showed in transgenic mice that lens-specific alphaB-crystallin promoter activity is directed by a proximal promoter fragment (-164/+44) and that non-lens promoter activity depends on an upstream enhancer (-427/-259) composed of at least 5 cis-control elements. Here we have used truncated alphaB-crystallin promoter-CAT transgenes to test by biphasic CAT assays and/or histochemistry for specific expression in the cornea and lens. Deletion either of 87 bp (-427/-340) from the 5' end of the alphaB-crystallin enhancer or of the whole enhancer (-427/-258) abolished alphaB-crystallin promoter activity in all tissues except the lens and corneal epithelium when examined by the biphasic CAT assay in 4-5-week-old transgenic mice. These truncations also lowered promoter strength in the lens. The -426/+44-CAT, -339/+44-CAT and -164/+44-CAT (previously thought to be lens-specific in transgenic mice) transgenes were all expressed in the 4-6-week-old corneal epithelium when examined histochemically. Immunohistochemical staining confirmed the presence of endogenous alphaB-crystallin in the mature corneal epithelial cells. CAT gene expression driven by the alphaB-crystallin promoter with or without the enhancer was evident in the embryonic and 4-6-week-old lens. By contrast, activity of the alphaB-crystallin promoter/enhancer-CAT transgene was not detectable in the corneal epithelium before birth. Taken together, these results indicate that the intact enhancer of the alphaB-crystallin/small heat shock protein gene is required for promoter activity in all tissues tested except the lens and cornea.  相似文献   

8.
Lens-specific expression of the delta 1-crystallin gene is governed by an enhancer in the third intron, and the 30-bp-long DC5 fragment was found to be responsible for eliciting the lens-specific activity. Mutational analysis of the DC5 fragment identified two contiguous, interdependent positive elements and a negative element which overlaps the 3'-located positive element. Previously identified ubiquitous factors delta EF1 bound to the negative element and repressed the enhancer activity in nonlens cells. Mutation and cotransfection analyses indicated the existence of an activator which counteracts the action of delta EF1 in lens cells, probably through binding site competition. We also found a group of nuclear factors, collectively called delta EF2, which bound to the 5'-located positive element. delta EF2a and -b were the major species in lens cells, whereas delta EF2c and -d predominated in nonlens cells. These delta EF2 proteins probably cooperate with factors bound to the 3'-located element in activation in lens cells and repression in nonlens cells. delta EF2 proteins also bound to a promoter sequence of the gamma F-crystallin gene, suggesting that delta EF2 proteins are involved in lens-specific regulation of various crystallin classes.  相似文献   

9.
10.
11.
12.
Combinatorial control of a neuron-specific exon.   总被引:4,自引:1,他引:3       下载免费PDF全文
The mouse c-src gene contains a short neuron-specific exon, N1. N1 exon splicing is partly controlled by an intronic splicing enhancer sequence that activates splicing of a heterologous reporter exon in both neural and nonneural cells. Here we attempt to dissect all of the regulatory elements controlling the N1 exon and examine how these multiple elements work in combination. We show that the 3' splice site sequence upstream of exon N1 represses the activation of splicing by the downstream intronic enhancer. This repression is stronger in nonneural cells and these two regulatory sequences combine to make a reporter exon highly cell-type specific. Substitution of the 3' splice site of this test exon with sites from other exons indicates that activation by the enhancer is very dependent on the nature of the upstream 3' splice site. In addition, we identify a previously uncharacterized purine-rich sequence within exon N1 that cooperates with the downstream intronic enhancer to increase exon inclusion. Finally, different regulatory elements were tested in multiple cell lines of both neuronal and nonneuronal origin. The individual splicing regulatory sequences from the src gene vary widely in their activity between different cell lines. These results demonstrate how a simple cassette exon is controlled by a variety of regulatory elements that only in combination will produce the correct tissue specificity of splicing.  相似文献   

13.
14.
Increasing specialization for δ-crystallin synthesis is a prominent feature of the differentiation of chick lens epithelial cells into lens fiber cells and can be studied in cultured embryonic lens epithelia. Quantitation of δ-crystallin mRNA by molecular hybridizaton to a [3H]DNA complementary to δ-crystallin mRNA demonstrates that differentiation, both in ovo and in tissue culture, is associated with the accumulation of δ-crystallin mRNA. In the cultures, there is an overall stimulation of protein synthesis, including δ-crystallin mRNA during the first 5 hr in vitro. Between 5 and 24 hr in vitro there is a differential stimulation of δ-crystallin synthesis and an accumulation of δ-crystallin mRNA that can quantitatively account for this stimulation.  相似文献   

15.
16.
The repressor delta EF1 was discovered by its action on the DC5 fragment of the lens-specific delta 1-crystallin enhancer. C-proximal zinc fingers of delta EF1 were found responsible for binding to the DC5 fragment and had specificity to CACCT as revealed by selection of high-affinity binding sequences from a random oligonucleotide pool. CACCT is present not only in DC5 but also in the E2 box (CACCTG) elements which are the binding sites of various basic helix-loop-helix activators and also the target of an unidentified repressor, raising the possibility that delta EF1 accounts for the E2 box repressor activity. delta EF1 competed with E47 for binding to an E2 box sequence in vitro. In lymphoid cells, endogenous delta EF1 activity as a repressor was detectable, and exogenous delta EF1 repressed immunoglobulin kappa enhancer by binding to the kappa E2 site. Moreover, delta EF1 repressed MyoD-dependent activation of the muscle creatine kinase enhancer and MyoD-induced myogenesis of 10T1/2 cells. Thus, delta EF1 counteracts basic helix-loop-helix activators through binding site competition and fulfills the conditions of the E2 box repressor. In embryonic tissues, the most prominent site of delta EF1 expression is the myotome. Myotomal expression as well as the above results argues for a significant contribution of delta EF1 in regulation of embryonic myogenesis through the modulation of the actions of MyoD family proteins.  相似文献   

17.
18.
19.
DNA sequences surrounding the immunoglobulin heavy chain (IgH) enhancer contain negative regulatory elements which are important for the tissue specificity of the enhancer. We have shown that sequences located both 5' and 3' of the enhancer, corresponding to the negative regulatory elements, become stably and uniformly unpaired over an extended length when subjected to torsional stress. These DNA sequences are also included within matrix association regions. The ability of the sequences to assume a stably unpaired conformation was shown by reactivity with chloroacetaldehyde which is specific for unpaired DNA bases, as well as two-dimensional gel electrophoresis of topoisomers. The sequences located 3' of the enhancer induce base unpairing in the direction of the enhancer. This unpaired region progressively expands to include as much as 200 base pairs as the ionic concentration decreases or superhelical density increases. When an ATATAT motif within a negative regulatory element located 3' of the enhancer was mutated, the extensive base-unpairing property was abolished. This base-unpairing property of DNA may be important for negative regulation of gene expression and attachment to the nuclear matrix.  相似文献   

20.
Limb bud cells of chick embryos (stages 23–24) were dissociated into single cells, reaggregated, and cultured in vitro for about a week. δ-Crystallin, generally thought to be a lens-specific protein in the chick, was detected in the aggregates by indirect immunofluorescent staining, double immunodiffusion test, and immunoelectrophoresis with specific antiserum against δ-crystallin. Cells containing δ-crystallin were distributed in epidermal cell clusters and also in mesenchymal tissues surrounding cartilage nodules in the aggregates. Those cells in mesenchymal tissues were shown to have originated from the mesoderm of the limb bud, and those in epidermal cell clusters probably originated from the ectoderm. The possible cellular origin of this appearance of δ-crystallin was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号