首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Testosterone (T) induces singing behavior and mediates changes in the sizes and neuroanatomical characteristics of brain regions controlling singing behavior (song control regions, SCRs) in songbirds. These effects may require the enzymatic conversion of T into androgenic and estrogenic metabolites by brain tissues and can be modulated by factors such as season and social context. Testosterone administration to adult male House Finches, Carpodacus mexicanus, in the spring increases the size of their SCRs. Here, we used males of this species to investigate effects of T and T metabolism on brain morphology and singing behavior in the fall. Birds received Silastic capsules containing androgens, estrogens, and/or inhibitors of androgenic action or estrogen synthesis to determine effects of these hormones on song rates and SCR volumes. We also manipulated the social environment by changing the number of birds in visual contact with each other. Testosterone treatment stimulated singing behavior in finches held in small, visually isolated groups and exposed to song playbacks. However, administration of T or T metabolites did not increase SCR sizes. The data suggest that photoperiodic condition and social context may modulate the effects of steroids on SCRs and singing behavior.  相似文献   

2.
In songbirds, testosterone (T) mediates seasonal changes in the sizes and neuroanatomical characteristics of brain regions that control singing (song control regions; SCRs). One model explaining the mechanisms of the growth of one SCR, the HVC, postulates that in the spring increasing photoperiod and circulating T concentrations enhance new neuron survival, thus increasing total neuron number. However, most research investigating the effects of T on new neuron survival has been done in autumn. The present study investigated the effects of photoperiod and T treatment on SCR growth and new neuron survival in the HVC in photosensitive adult male House Finches, Carpodacus mexicanus, under simulated spring-like conditions. Birds were castrated, given T-filled or empty Silastic capsules and maintained on short days (SD; 8L:16D) or long days (LD; 16L:8D). To mark new cells, birds received bromodeoxyuridine injections 11 days after experimental manipulations began and were sacrificed 28 days later. Testosterone treatment increased the sizes of two SCRs, the HVC and Robust nucleus of the arcopallium (RA). Exposure to LD did not affect HVC volume, but did increase RA volume. Testosterone treatment increased the total number of HVC neurons, but did not affect the number of new HVC neurons. Thus, T initiates SCR growth and increases neuron survival, but effects of T on new neuron incorporation may be limited in photosensitive birds under spring-like conditions. These results provide new insight into the effects of photoperiod and T treatment on vernal SCR growth and new neuron incorporation and support current models explaining this growth.  相似文献   

3.
Adult male canaries learn to produce high-amplitude complex courtship songs each breeding season, whereas females do not, and brain nuclei involved with the production of song behavior are much larger in breeding males than in nonbreeding males or females (Nottebohm, 1980, 1981). However, treatment of adult females with testosterone (T) causes them to produce male-like song and stimulates pronounced growth of some song-control brain nuclei such as the caudal nucleus of the ventral hyperstriatum (HVc). We reexamined the effects of T on song-control nuclei in deafened birds. In order to examine whether the pattern of hormone accumulation varies as a function of circulating testosterone levels we described the distribution of testosterone-concentrating cells in HVc and the magnocellular nucleus of the anterior neostriatum (MAN) in hearing adult male, female, and T-treated female canaries, as well as in deaf T-treated and untreated females. In contrast to our previous findings (Bottjer, Schoonmaker, and Arnold, 1986a), we observed no tendency in this study for testosterone-induced growth of HVc to be attenuated in deafened birds. There was no difference between deaf and hearing birds in the incidence of labeled cells within HVc. We also observed no sex or hormone-induced differences in the percentage of hormone-concentrating cells in HVc: normal females have approximately the same proportion of hormone target cells as do males and T-treated females. However, males normally have many more neurons in HVc than do control females, and systemic exposure to testosterone induces a pronounced increase in the number of HVc neurons of adult females. Therefore, the absolute number of hormone target cells in HVc is likely to be much greater in males and T-treated females than in normal females. As in HVc, there were no differences among groups in the proportion of labeled cells within lateral MAN (IMAN), a nucleus that has been implicated in song learning (Bottjer, Miesner and Arnold, 1984). In contrast, the incidence of hormone target cells in medial MAN (mMAN) did vary as a function of hormonal condition: although mMAN of normal females is rarely visible in Nissl-stained sections and cells in this region are not hormone labeled, mMAN is clearly visible in Nisslstained sections of males and T-treated females and contains many hormone-labeled cells. This testosterone-induced change in the phenotype of mMAN cells suggests a possible role for mMAN in learned song behavior.  相似文献   

4.
Adult male canaries learn to produce high-amplitude complex courtship songs each breeding season, whereas females do not, and brain nuclei involved with the production of song behavior are much larger in breeding males than in nonbreeding males or females (Nottebohm, 1980, 1981). However, treatment of adult females with testosterone (T) causes them to produce male-like song and stimulates pronounced growth of some song-control brain nuclei such as the caudal nucleus of the ventral hyperstriatum (HVc). We reexamined the effects of T on song-control nuclei in deafened birds. In order to examine whether the pattern of hormone accumulation varies as a function of circulating testosterone levels we described the distribution of testosterone-concentrating cells in HVc and the magnocellular nucleus of the anterior neostriatum (MAN) in hearing adult male, female, and T-treated female canaries, as well as in deaf T-treated and untreated females. In contrast to our previous findings (Bottjer, Schoonmaker, and Arnold, 1986a), we observed no tendency in this study for testosterone-induced growth of HVc to be attenuated in deafened birds. There was no difference between deaf and hearing birds in the incidence of labeled cells within HVc. We also observed no sex or hormone-induced differences in the percentage of hormone-concentrating cells in HVc: normal females have approximately the same proportion of hormone target cells as do males and T-treated females. However, males normally have many more neurons in HVc than do control females, and systemic exposure to testosterone induces a pronounced increase in the number of HVc neurons of adult females. Therefore, the absolute number of hormone target cells in HVc is likely to be much greater in males and T-treated females than in normal females. As in HVc, there were no differences among groups in the proportion of labeled cells within lateral MAN (IMAN), a nucleus that has been implicated in song learning (Bottjer, Miesner and Arnold, 1984). In contrast, the incidence of hormone target cells in medial MAN (mMAN) did vary as a function of hormonal condition: although mMAN of normal females is rarely visible in Nissl-stained sections and cells in this region are not hormone labeled, mMAN is clearly visible in Nissl-stained sections of males and T-treated females and contains many hormone-labeled cells. This testosterone-induced change in the phenotype of mMAN cells suggests a possible role for mMAN in learned song behavior.  相似文献   

5.
Brain nuclei that control song are larger in male canaries, which sing, than in females, which sing rarely or not at all. Treatment of adult female canaries with testosterone (T) induces song production and causes song-control nuclei to grow, approaching the volumes observed in males. For example, the higher vocal center (HVC) of adult females approximately doubles in size by 1 month following the onset of T treatment. Male HVC projects to a second telencephalic nucleus, RA (the robust nucleus of the archistriatum), which projects in turn to the vocal motor neurons. Whether HVC makes a similar connection in female canaries is not known, although HVC and RA are not functionally connected in female zebra finches, a species in which testosterone does not induce neural or behavioral changes in the adult song system. This experiment investigated whether HVC makes an efferent projection to RA in normal adult female canaries, or if T is necessary to induce the growth of this connection. In addition, we examined whether T-induced changes in adult female canary brain are reversible. Adult female canaries received systemic T implants that were removed after 4 weeks; these birds were killed 4 weeks after T removal (Testosterone-Removal, T-R). Separate groups of control birds received either (a) T implants for 4 weeks which were not removed (Testosterone-Control, T-C) or (b) empty implants (Untreated Control, øO-C). Crystals of the fluorescent tracer DiI were placed in the song-control nucleus HVC in order to anterogradely label both efferent targets of HVC, RA and Area X. Projections from HVC to RA and Area X were present in all treatment groups including untreated controls, and did not appear to differ either qualitatively or quantitatively. Thus, formation of efferent connections from HVC may be prerequisite to hormone-induced expression of song behavior in adult songbirds. The volumes of RA and Area X were measured using the distribution of anterograde label as well as their appearance in Nissl-stained tissue. RA was larger in T-treated control birds than in untreated controls. Experimental birds in which T was given and then removed (T-R) had RA volumes closer in size to untreated controls (ø-C). Because the volume of RA in T-treated controls (T-C) was larger than that of birds that did not receive T (ø-C), we conclude that the volume of RA increased in both T-C and T-R birds but regressed upon removal of T in T-R birds. Surprisingly, the volume of Area X did not increase in T-treated birds. Birds in this study were maintained on short days, suggesting that T-induced growth of Area X reported previously may have resulted from an interaction between T and another seasonal or photoperiodic factor induced by exposure to long daylengths. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
This study tested the hypothesis that the relative proportion of neurons that are hormone sensitive in avian song control nuclei is related to the basic motor ability to sing, whereas the absolute number of such neurons is related to the complexity of song behavior. Either [3H]testosterone (T) or estradiol (E2) was injected into male and female rufous and white wrens (Thryothorus rufalbus), a tropical species in which females sing duets with males but have smaller song repertoires than males. Autoradiographic analysis indicated that there were no sex differences in the proportions of T or E2 target cells in two song nuclei: the high vocal center (HVC) and the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN). The density of labeled cells per unit volume of tissue did not differ between the sexes in either song nucleus. Males have larger song nuclei, however, which is consistent with their more complex song behavior, and therefore have a greater total number of hormone-sensitive neurons in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches, canaries, and bay wrens supports the hypothesis presented. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei.  相似文献   

8.
Male canaries revise their vocal repertoire every year. Early work indicated that the volume and neuron number of the song-control nucleus HVC (Higher Vocal Center) declined in late-summer/fall as birds added and deleted syllables from their repertoire, and increased in spring as the set of song syllables stabilized to a fixed number. Seasonal variation in serum testosterone levels suggested that these changes in brain and behavior were regulated by testosterone (T). However, although initial studies describing growth and regression of HVC used Nissl-staining to define its borders, recent experiments that have measured the distribution of identified populations of HVC cells (projection neurons, hormone target cells) suggest that there are no seasonal changes in HVC volume or neuron number. In order to clarify the role of T in the regulation of HVC morphology, we castrated male canaries, maintained them on short (fall-like) days, and treated them with either T, antisteroid drugs, or nothing. After 1 month of treatment, we used a double-labeling technique to characterize HVC projection neurons and androgen target cells. The results showed that hormonal manipulation influenced HVC volume, the density and size of HVC cells, and the absolute number and percentage of androgen target cells in HVC. Hormonal manipulation did not influence the absolute number of cells in HVC. Moreover, the distribution of projection neurons, androgen target cells, and the Nissl-defined borders of HVC were closely aligned in all experimental groups, indicating that exposure to T and/or its metabolites (estradiol and dihydrotestosterone) regulates the overall size of HVC by affecting the distributions of both projection neurons and androgen target cells. Analysis of double-labeling results suggests that T specifically influences both cell size and the ability to accumulate androgen among HVC neurons that project to the robust nucleus of the archistriatum (RA). The results of this study show that steroid hormones exert potent effects on HVC morphology in male canaries, but differences between our results and studies of seasonal males suggest there may be additional factors that can regulate HVC morphology. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Gonadal hormones can produce striking behavioral and neural plasticity in adult organisms. For example, systemic administration of testosterone to adult female canaries induces the development of male-typical song behavior and results in a striking increase in the size of brain nuclei that are known to be involved with song control. The mechanism whereby androgens produce such neural plasticity is not known, although it has seemed likely that growth-promoting effects of androgens are due to a direct induction of protein synthesis in cells containing hormone receptors (following activation of specific genes by the hormone-receptor complex). In this experiment we have examined the trophic effect of testosterone in the song-control nucleus HVc (caudal nucleus of the ventral hyperstriatum), which has been shown to contain androgen-concentrating cells as well as neurons that are especially responsive to conspecific song. We report here that testosterone administration increases the volume of HVc in hearing adult female canaries only; testosterone-induced growth of HVc is greatly attenuated in birds that are deprived of auditory stimulation via deafening. Thus, testosterone treatment alone is not a sufficient stimulus for neural growth in HVc. This result suggests that testosterone does not stimulate growth solely via a direct action on hormone receptors in HVc, but rather that testosterone and sensory stimulation can act synergistically to produce structural plasticity in the adult brain.  相似文献   

10.
Treatment of adult female canaries with testosterone (T) causes them to produce male-typical vocalizations and results in striking growth of brain nuclei that control song behavior (Nottebohm, 1980). The song-control nucleus HVc (caudal nucleus of the ventral hyperstriatum) contains cells that concentrate testosterone or its metabolites, suggesting that steroid hormones may induce the growth of HVc directly by regulating the expression of specific genes in those HVc neurons that have steroid receptors. However, we have previously provided evidence that is inconsistent with the idea that steroids promote growth of HVc solely via a direct action on hormone receptors: testosterone treatment of deafened adult females results in very little growth of HVc, relative to T-treated hearing birds (Bottjer et al., 1986b). Thus, birds in the former group undergo very little overall growth of HVc despite high circulating levels of hormone. We show here that the slightly increased size of HVc in T-treated deaf birds is attributable to an increase in neuronal spacing; the greatly increased size of HVc in T-treated hearing birds is due to an increase in neuronal number as well as spacing. There was virtually no increase in number of HVc neurons in T-treated deafened birds relative to control groups, whereas T-treated hearing birds showed a marked increase in neuron number. The song-control nucleus RA (robust nucleus of the archistriatum), which receives direct afferent input from HVc, also increases in size in response to testosterone treatment. However, the volume of RA increases in both hearing and deafened birds; this increase is primarily due to an increase in neuronal spacing as well as a small increase in neuron number. These results demonstrate that the number of neurons in a specific vocal-control nucleus (HVc) can change dramatically in adult canaries and suggest that some synergistic action of hormonal and sensory stimulation is necessary to induce such a change.  相似文献   

11.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
Temperate zone songbirds that breed seasonally exhibit pronounced differences in reproductive behaviors including song inside and outside the breeding season. Springlike long daylengths are associated with increases in plasma testosterone (T) concentrations, as well as with increases in singing and in the volume of several brain nuclei known to control this behavior. The mechanisms whereby T can induce changes in behavior and brain, and whether or not these effects are differentially regulated, have recently begun to be examined, as has the question of the relative contributions of T and its androgenic and estrogenic metabolites to the regulation of this seasonal behavioral and neural plasticity. In this experiment, we examined the effects of T, 5alpha-dihydrotestosterone, or 17beta-estradiol treatment on castrated male canaries housed on short days and compared neural and behavioral effects in these males to similarly-housed males given only blank implants. We observed that only T treatment was effective in eliciting significant increases in singing behavior after 11 days of hormone exposure. In addition, T alone was effective in increasing the volume of a key song production nucleus, HVC. However, at this time, none of the steroids had any effects on the volumes of two other song control nuclei, Area X of the medial striatum and the robust nucleus of the arcopallium (RA), that are efferent targets of HVC, known to be regulated by androgen in canaries and also to play a role in the control of adult song. T can thus enhance singing well before concomitant androgen-induced changes in the song control system are complete.  相似文献   

13.
Learned communication was a trait observed in a limited number of vertebrates such as humans but also songbirds (i.e., species in the suborder passeri sometimes called oscines). Robust male‐biased sex‐differences in song development and production have been observed in several songbird species. However, in some of these species treating adult females with testosterone (T) induced neuro‐behavioral changes such that females become more male‐like in brain and behavior. T‐treatment in these adult females seemed to stimulate sensorimotor song development to facilitate song masculinization. In male songbirds it was known that the lateral magnocellular nucleus of the anterior nidopallium (LMAN) played a modulatory role during song development. LMAN was androgen sensitive and may be a key target of a T‐induced recapitulation of a developmental process in adult females. This hypothesis was tested. Adult female canaries were given either a chemical lesion of LMAN or a control sham‐surgery. Prior to surgery birds were individually housed for 2‐weeks in sound‐attenuated chambers to record baseline vocal behavior. Post‐surgery birds were given 1‐week to recover before subcutaneous implantation with silastic capsules filled with crystalline‐T. Birds remained on treatment for 3‐weeks (behavioral recordings continued throughout). Birds with a lesion to LMAN had less variability in their song compared with controls. The diversity of syllable and phrase type(s) was greater in sham controls as compared with birds with LMAN lesions. Birds did not differ in song rate. These data suggested that the sustention and conclusion of T‐induced sensorimotor song development in adult female canaries required an intact LMAN. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 3–18, 2016  相似文献   

14.
The estrogen synthesizing enzyme, P450 aromatase, plays a critical role in the regulation of vertebrate sexual behavior. Songbirds differ from other avian species in the distribution and expression of aromatase in the telencephalon. The highest concentration of aromatase in the songbird brain is found in the caudomedial neostriatum (NCM). This area surrounds the only nucleus of the neural song system that contains estrogen receptors, the high vocal center (HVC). It has been suggested that estrogen produced in NCM via aromatization of circulating testosterone (T) is involved in song development and adult song plasticity. The modalities of regulation of aromatase in NCM are not well understood, and some studies suggest that in NCM, unlike in the preoptic-hypothalamic areas, aromatase is not regulated by androgen and/or estrogen. In this work, we studied whether the treatment of female canaries with T, which induces the development of malelike song and the masculinization of the song system, also induces an increase in the expression and activity of aromatase in NCM. Our results show that both the expression and activity of aromatase in NCM increase in female canaries following T treatment. This study provides the first direct evidence that T regulates telencephalic aromatase in songbirds, and suggests that an increase in estrogen production in NCM might be functional in neural and behavioral plasticity during phases of song organization.  相似文献   

15.
The present study examines the development of androgen accumulation in cells of two brain nuclei that are involved in controlling vocal behavior in zebra finches (Poephila guttata). HVc (caudal nucleus of the ventral hyperstriatum) is involved with vocal production in adult birds, and MAN (magnocellular nucleus of the anterior neostriatum) is involved with the initial ability to learn song. In both of these nuclei there is an increase in the proportion of cells that are labeled by systemic injections of tritiated dihydrotestosterone in juvenile male zebra finches during the time when production of song is becoming stereotyped (25-60 days). Within MAN there is an overall loss of cells during this time, such that the absolute number of androgen target cells in MAN remains at a constant level. However, it does not appear to be the case that unlabeled cells are selectively lost from MAN. Rather it appears that both labeled and unlabeled cells are lost, and the absolute number of labeled cells is maintained at a constant level via recruitment of additional labeled cells from the unlabeled population (i.e., some MAN cells that are unlabeled in young birds become labeled in older birds). In line with this hypothesis, there is a large increase in the density of labeling in individual MAN cells, indicating that these cells have an enhanced ability to concentrate androgen. In contrast to the situation in MAN, there is an increase in the overall number of cells within HVc during this time; this increase in total cell number combines with the increased proportion of labeled cells such that the absolute number of androgen target cells in HVc increases threefold. The ability of individual HVc cells to accumulate androgen remains constant. The relationship of these changes in the pattern of androgen accumulation to other aspects of neural and behavioral development related to song in zebra finches are discussed.  相似文献   

16.
The higher vocal center (HVC) of adult male canries undergoes a seasonal change in volume that corresponds to seasonal modifications of vocal behavior: HVC is large when birds produce stereotyped song (spring) and is small when birds produce plastic song and add new song syllables into their vocal repertoires (fall). We reported previously that systemic exposure to testosterone (T) produces an increase in the volume of HVC similar to that observed with long-day photoperiods. T-induced growth of HVC occured regardless of wheter the borders of HVC were defined by Nissl-staining, the distribution of androgen-concentrating cells, or the distribution of projection neurons [separate neuronal populations within HVC project to the robust nucleus of the archistriatum (RA) and to Area X of the avian striatum (X)]. In the present study we used steroid autoradiography to determine whether T can influence the distribution of HVC cells that bind estrogen, and we combined estrogen autoradiography with retrograde labeling to determine whether HVC neurons that project to RA versus X differ in their ability to accumulate estrogen. Results showed that T increased the volume of Nissl-defined HVC and although HVC contained a low density of estrogen-concentrating cells, T increased the spatial distribution of these cells to match the Nissl borders of HVC. We also identified a region containing a high density of estrogenconcentrating cells located medial to HVC [we call this region paraHVC (pHVC)], and T also increased the volume of pHVC. pHVC also contained numerous X-projecting neurons, but few if any RA-projecting neurons. Double-labeling analysis revealed the RA-projecting neurons did not accumulate estrogen, a small percentage of X-projecting neurons in HVC accumulated estrogen, and the majority of X-projecting neurons in pHVC showed heavy accumulation of estrogen. The data reported here and in our previous article suggest distinct roles for gonadal steroids within the HVC-pHVC complex: estrogens are concentrated by neurons that project to a striatal region that influences vocal production during song learning (X), whereas androgens are concentrated primarily by neurons that project to a motor region that is involved in vocal production during both song learning and the recitation of already-learned song (RA). © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Although the gonadal photoperiodic response and its influence upon the song control system in canaries have been extensively studied, photoperiodic regulation of the GnRH system has not been investigated. To examine the relationship between photoperiod and the reproductive neuroendocrine system in male and female canaries, three groups of canaries were exposed to chronic short days (8L:16D; Phsens), acute long days (18L:6D; Phstim) and chronic long days (also 18L:6D; Phrefr) to induce the reproductive states of photosensitivity, photostimulation, and photorefractoriness, respectively. Brain sections were processed for GnRH immunocytochemistry. The canaries in this study did not demonstrate consistent or uniform responses to different photoperiodic treatments. In males, gonad size varied with photoperiod; Phstim males had larger gonads than either the Phsens or Phrefr males. In contrast, there was no difference between groups in female gonad size as a result of photoperiodic treatment. Brain GnRH cell number, cell size, and fiber density were similar in all groups. The results suggest that canaries are not as obligatory photoperiodic as previously thought (or at least not all varieties of domestic canaries are). This could be a result of many years of domestication, the natural history of the species, phylogenetic constraint, or a combination of these factors.  相似文献   

18.
19.
20.
Neurogenesis continues in the brain of adult birds. These cells are born in the ventricular zone of the lateral ventricles. Young neurons then migrate long distances guided, in part, by radial cell processes and become incorporated throughout most of the telencephalon. In songbirds, the high vocal center (HVC), which is important for the production of learned song, receives many of its neurons after hatching. HVC neurons which project to the robust nucleus of the archistriatum to form part of the efferent pathway for song production, and HVC interneurons continue to be added throughout life. In contrast, Area X-projecting HVC cells, thought to be part of a circuit necessary for song learning but not essential for adult song production, are only born in the embryo. New neurons in HVC of juvenile and adult birds replace older cells that die. There is a correlation between seasonal cell turnover rates (addition and loss) and testosterone levels in adult male canaries. Available evidence suggests that steroid hormones control the recruitment and/or survival of new HVC neurons, but not their production. The functions of neuronal replacement in adult birds remain unclear. However, rates of HVC neuron turnover are highest at times of year when canaries modify their songs. Replaceable HVC neurons may participate in the modification of perceptual memories or motor programs for song production. In contrast, permanent HVC neurons could hold long-lasting song-related information. The unexpected large-scale production of neurons in the adult brain holds important clues about brain function and, in particular, about the neural control of a learned behavior—birdsong. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 585–601, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号