首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in nerve biochemistry, anatomy, and function following injuries to the contralateral nerve have been repeatedly reported, though their significance is unknown. The most likely mechanisms for their development are either substances carried by axoplasmic flow or electrically transmitted signals. This study analyzes which mechanism underlies the development of a contralateral change in protein metabolism. The incorporation of labelled amino acids (AA) into proteins of both sciatic nerves was assessed by liquid scintillation after an unilateral section. AA were offered locally for 30 min to the distal stump of the sectioned nerves and at homologous levels of the intact contralateral nerves. At various times, from 1 to 24 h, both sciatic nerves were removed and the proteins extracted with trichloroacetic acid (TCA). An increase in incorporation was found in both nerves 14-24 h after section. No difference existed between sectioned and intact nerves, which is consistent with the contralateral effect. Lidocaine, but not colchicine, when applied previously to the nerves midway between the sectioning site and the spinal cord, inhibited the contralateral increase in AA incorporation. It is concluded that electrical signals, crossing through the spinal cord, are responsible for the development of the contralateral effect. Both the nature of the proteins and the significance of the contralateral effect are matters for speculation.  相似文献   

2.
Axonal transport of labelled protein was studied in rat sciatic nerve by analyzing nerve segments at intervals after injection of L-[3H]leucine into the lumbar spinal cord. Some nerves were sectioned before injection so that material in transit accumulated proximal to the section. The segments distal to the section served as controls for incorporation into the nerve of blood-borne label. An analysis of TCA-soluble and TCA-insoluble activity in cut and intact nerve segments was also made. No evidence was found for the existence of a 'superfast' component of axonal transport (velocity 2000 mm/day). Results showed that the most rapidly transported protein derived from the neuron soma had a conventional 'fast' velocity of 350-420 mm/day. There was no transport of TCA-soluble material. It is suggested that 'superfast' transport, detected in mice by other investigators, is an artefact resulting from failure to control for incorporation of circulating label into the sciatic nerve.  相似文献   

3.
Propepties of spinal cord proteins were studied in adult mice subjected to unilateral crush or electrical stimulation of sciatic nerve. The protein composition of spinal tissue was determined using SDS-polyacrylamide gel electrophoresis coupled with subcellular fractionation. Comparisons of mouse spinal cord and brain revealed similarities in the types but differences in the concentrations of myelin associated proteins, nuclear histones and other proteins. Comparisons with sciatic nerve proteins demonstrated differences in types of proteins but similarities in the concentration of myelin proteins and nuclear histones. The short term (<2 hrs.) incorporation of radioactive amino acids into spinal cord proteins revealed heterogeneous rates of incorporation. Neither nerve crush six days prior to testing nor sciatic nerve stimulation had a significant effect on the protein composition or amino acid incorporation rates of spinal cord tissue. These observations suggest that known differences in spinal cord function following alterations in nerve input may be dependent upon different mechanisms than have been found in the brain.  相似文献   

4.
Abstract— Utilizing an in vitro labeling procedure, the proteins carried by rapid axoplasmic transport in normal and regenerating sensory fibers of the rat sciatic nerve were compared. No statistically significant differences were found when the total amount of transported protein was compared in control and sectioned nerves at times from 2 to 76 days following axotomy. Fractionation of labeled proteins on polyacrylamide slab gels enabled the identification of some 25 individual transported proteins. By this criterion, no differences were detectable in the composition of proteins synthesized in the dorsal root ganglia from which sectioned vs control sciatic nerves project. When the electrophoretic distributions of transported proteins from control and sectioned nerves were compared, significant' differences were observed. The appearance and disappearance of two proteins were temporally related to chromatolytic changes in the nerve cell body. In addition, the composition of transported proteins in undamaged control nerves contralateral to the sectioned nerves exhibited changes which were not observed in either normal control nerves or sectioned nerves. Changes in the composition of transported proteins as a function of time following the onset of chromatolysis may be involved in controlling nerve regeneration in sensory nerve fibers.  相似文献   

5.
The fast axonal transport of proteins was studied in the cat sciatic nerve after injection of [3H]leucine into the spinal ganglion or the ventral horn of the seventh lumbar segment. The amount of transported proteins after ganglion injection was linearly related to the amount of label present at the ganglion. At variable intervals after ganglion or spinal cord injection, the sciatic nerves were sectioned in some experiments. The transport of proteins continued in the peripheral nerve stump in a wavelike manner, but the advancing wave leaves a labeled trail behind. A fraction of this trail corresponds to proteins moving at slower velocities than the velocity of proteins in the wave front. Another fraction of the trail corresponds to molecules retained by the axons. Each nerve segment of 5 mm in length retains 1.5% of the transported proteins, and the profile of retained proteins along the sciatic nerves follows a single exponential function. From the proportion of retained proteins, the concentration of transported proteins at the terminals of branching axons as a function of the branching ratio was estimated. In the case of motor axons innervating the soleus muscle of the cat, the concentration of recently transported proteins at the nerve terminals would be approximately 0.83% of the proteins leaving the spinal cord. This low concentration of transported proteins at the nerve terminals may explain the lability of neuromuscular synapses when axonal transport is decreased or interrupted.  相似文献   

6.
Changes in the incorporation of 14C-amino acids into proteins in vitro were followed under conditions of ischemia induced by abdominal aorta ligature and subsequent recirculation in dogs. Cell saps isolated from L-S spinal cord, spinal ganglia, the sciatic nerve and medulla oblongata were added to the incorporation mixture composed of ribosomes and an enzymatic system from intact brains. Cytosols isolated from ischemic animals affected the rate of in vitro protein synthesis moderately, while repeated ischemia caused a profound decrease in the incorporation of amino acids into proteins. Cytosols from L-S spinal cord and especially from spinal ganglia after three days of recirculation substantially enhanced incorporation thus indicating a massive response of these tissues to ischemic injury. Cell saps from the medulla oblongata increased amino acid incorporation into proteins in vitro in all experimental groups.  相似文献   

7.
Hiroi S  Tsukamoto Y  Sasaki F  Miki N  Taira E 《FEBS letters》2003,554(3):311-314
We have examined the role of gicerin, an immunoglobulin superfamily cell adhesion molecule, in chick sciatic nerves during development and regeneration. Gicerin was expressed in the spinal cord, dorsal root ganglion (DRG) and sciatic nerves in embryos, but declined after hatching. Neurite extensions from explant cultures of the DRG were promoted on gicerin's ligands, which were inhibited by an anti-gicerin antibody. Furthermore, gicerin expression was upregulated in the regenerating sciatic nerves, DRG and dorsal horn of the spinal cord after injury to the sciatic nerve. These results indicate that gicerin might participate in the development and regeneration of sciatic nerves.  相似文献   

8.
The effect of ACTH/MSH peptides on fast axonal transport along intact or regenerating sciatic nerve was examined following injection of tritiated leucine into the rat lumbar spinal cord. The rate of fast axonal transport was not significantly changed by treatment with ACTH/MSH(4-10), the ACTH(4-9) analog ORG 2766, hypophysectomy, or adrenalectomy. Fast axonal transport was unchanged in regenerating nerves and in regenerating, ACTH(4-10)-treated nerves. However, treatment with ORG 2766 in dosages of either 1 or 10 micrograms/kg/day IP for seven days significantly reduced (62% and 64%, respectively) the crest height of the fast axonal transport curve of intact sciatic nerve. The results suggest that the reported peptide-induced enhancement of nerve regeneration is not due to changes in the rate of fast axonal transport.  相似文献   

9.
Abstract: Experiments were performed to determine whether ppsttranslational addition of amino acids to axonal proteins occurs in axons of the rat sciatic nerve. Two ligatures were placed 1 cm apart on sciatic nerves. Six days later, segments proximal to each ligature were removed, homogenized, centrifuged at 150,000 · g , and analyzed for the ability to incorporate 3H-amino acids into proteins. No incorporation of amino acids into proteins was found in the high-speed supernatant, but when the supernatant was passed through a Sephacryl S-200 chromatography column (removing molecules less than 20 kD), [3H]arginine, lysine, leucine and aspartic acid were incorporated into proteins in both proximal and distal nerve segments. Small but consistently greater amounts of radioactivity were incorporated into proteins in proximal segments compared with distal segments, indicating that the components necessary for the reaction are transported axonally. This reaction represents the posttranslational incorporation of a variety of amino acids into proteins of rat sciatic nerve axons. Other experiments showed that the incorporation of amino acids into proteins is by covalent bonding, that the amino acid donor is likely to be tRNA, and that the reaction is inhibited in vivo by a substance whose molecular mass is less than 20 kD. This inhibition is not affected by incubation with physiological concentrations of unlabeled amino acids, by boiling, or by treatment with Proteinase K. When the axonally transported component of the reaction was determined in regenerating nerves, the amount of incorporation of amino acids into protein was 15–150 times that in intact nerves. The results indicate that the components of this reaction are transported axonally in rat sciatic nerves and that the reaction is increased dramatically in growing axons during nerve regeneration.  相似文献   

10.
The spread of the abnormal conformation of the prion protein, PrP(Sc), within the spinal cord is central to the pathogenesis of transmissible prion diseases, but the mechanism of transport has not been determined. For this report, the route of transport of the HY strain of transmissible mink encephalopathy (TME), a prion disease of mink, in the central nervous system following unilateral inoculation into the sciatic nerves of Syrian hamsters was investigated. PrP(Sc) was detected at 3 weeks postinfection in the lumbar spinal cord and ascended to the brain at a rate of approximately 3.3 mm per day. At 6 weeks postinfection, PrP(Sc) was detected in the lateral vestibular nucleus and the interposed nucleus of the cerebellum ipsilateral to the site of sciatic nerve inoculation and in the red nucleus contralateral to HY TME inoculation. At 9 weeks postinfection, PrP(Sc) was detected in the contralateral hind limb motor cortex and reticular thalamic nucleus. These patterns of PrP(Sc) brain deposition at various times postinfection were consistent with that of HY TME spread from the sciatic nerve to the lumbar spinal cord followed by transsynaptic spread and retrograde transport to the brain and brain stem along descending spinal tracts (i.e., lateral vestibulospinal, rubrospinal, and corticospinal). The absence of PrP(Sc) from the spleen suggested that the lymphoreticular system does not play a role in neuroinvasion following sciatic nerve infection. The rapid disease onset following sciatic nerve infection demonstrated that HY TME can spread by retrograde transport along specific descending motor pathways of the spinal cord and, as a result, can initially target brain regions that control vestibular and motor functions. The early clinical symptoms of HY TME infection such as head tremor and ataxia were consistent with neuronal damage to these brain areas.  相似文献   

11.
12.
Peripheral nerve demyelination was induced in cats by oral administration of ether extracts of Tullidora (Karwinskia humboldtiana). Proteins from several hindlimb nerves, spinal roots, and dorsal columns of the spinal cord were subjected to slab gel electrophoresis and quantified by densitometry. In Tullidora-treated cats with severe motor disturbances, specific myelin proteins were reduced by at least 50% in motor nerves and less than 25% in cutaneous axons. There was a greater decrease of these proteins in the distal than in the cephalad segments of the sciatic nerve; no changes were detected either in the spinal roots or in the white matter of the spinal cord. Electron microscopy revealed intense demyelination in the motor nerves only. Both the density of the 100 A-thick neurofilaments and the relative proportion of a polypeptide with a molecular weight of 68,000 were considerably increased in the affected nerves. It is tentatively concluded that the active principles of Tullidora may enter the axons through the motor nerve terminals. The distal segments of the motor nerves would then be preferentially affected and demyelination could result from axonal damage.  相似文献   

13.
The aromatic hydrocarbon 1,2-diacetylbenzene (1,2-DAB) is a protein-reactive γ-diketone metabolite of the neurotoxic solvent 1,2-diethylbenzene (1,2-DEB). The effect of neurotoxic 1,2-DAB and its non-neurotoxic isomer 1,3-DAB has been studied on motor proteins and cytoskeletal proteins of rat spinal cord (SC). For in vitro studies, SC slices were incubated with 1, 2, 5, 10 mM of DAB isomers for 30 min at 37°C. For in vivo studies, rats received (i.p.) 20 mg/kg/day of 1,2-DAB or 1,3-DAB, or vehicle (2% acetone in saline), 5 days a week for 2 weeks. Spinal cord and sciatic nerve proteins were subjected to Western blotting using monoclonal mouse antibodies to NF-M, kinesin, dynein, and tau. Proteins were quantified and paired mean comparisons performed to assess concentration-dependent changes in native protein bands. In vitro, 1,2-DAB produced a concentration-dependent decrease of motor and cytoskeletal proteins. While dynein and tau appeared similarly affected by 1,2-DAB, kinesin was most affected by the toxicant. In vivo, 1,2-DAB affected motor and cytoskeletal proteins of sciatic nerves and spinal cord differentially. In general, sciatic nerve proteins were much more affected than spinal cord proteins. The results show that motor proteins that drive axonal transport anterogradely (kinesin) and retrogradely (dynein), cytoskeletal protein NF-M, which is slowly transported in the anterograde direction, and microtubule-associated protein, tau, which is involved in axonal transport, are differentially impacted by 1,2-DAB. By contrast, non-neurotoxic isomer 1,3-diacetylbenzene (1,3-DAB), had no adverse effect on neural proteins either in vitro or in vivo. 2D-Differential in gel electrophoresis (2D-DIGE) of sciatic nerves from neurotoxic 1,2-DAB and non-neurotoxic 1,3-DAB treated rats revealed 197 and 304 protein spots, respectively. This paper is dedicated to my long-time friend Naren L. Banik, Ph.D.  相似文献   

14.
1. To vicariously investigate the nitric oxide synthase (NOS) production after spinal cord injury, NADPH-d histochemistry was performed on the selected peripheral nerves of adult rabbits 7 days after ischemia. The effect of transient spinal cord ischemia (15 min) on possible degenerative changes in the motor and mixed peripheral nerves of Chinchilla rabbits was evaluated.2. The NADPH-diaphorase histochemistry was used to determine NADPH-diaphorase activity after ischemia/reperfusion injury in radial nerve and mediane nerve isolated from the fore-limb and femoral nerve, saphenous nerve and sciatic nerve separated from the hind-limb of rabbits. The qualitative analysis of the optical density of NADPH-diaphorase in selected peripheral nerves demonstrated different frequency of staining intensity (attained by UTHSCSA Image Tool 2 analysis for each determined nerve).3. On the seventh postsurgery day, the ischemic spinal cord injury resulted in an extensive increase of NADPH-d positivity in isolated nerves. The transient ischemia caused neurological disorders related to the neurological injury—a partial paraplegia. The sciatic, femoral, and saphenous nerves of paraplegic animals presented the noticeable increase of NADPH-d activity. The mean of NADPH-diaphorase intensity staining per unit area ranged from 134.87 (±32.81) pixels to 141.65 (±35.06) pixels (using a 256-unit gray scale where 0 denotes black, 256 denotes white) depending on the determined nerve as the consequence of spinal cord ischemia. The obtained data were compared to the mean values of staining intensity in the same nerves in the limbs of control animals (163.69 (±25.66) pixels/unit area in the femoral nerve, 173.00 (±32.93) pixels/unit area in saphenous nerve, 186.01 (±29.65) pixels/unit area in sciatic nerve). Based on the statistical analysis of the data (two-way unpaired Mann–Whitney test), a significant increase (p≤0.05) of NADPH-d activity in femoral and saphenous nerve, and also in sciatic nerve (p≤0.001) has been found. On the other hand, there was no significant difference between the histochemically stained nerves of fore-limbs after ischemia/reperfusion injury and the same histochemically stained nerves of fore-limbs in control animals.4. The neurodegenerative changes of the hind-limbs, characterized by damage of their motor function exhibiting a partial paraplegia after 15 min spinal cord ischemia and subsequent 7 days of reperfusions resulted in the different sensitivity of peripheral nerves to transient ischemia. Finally, we suppose that activation of NOS indirectly demonstrable through the NADPH-d study may contribute to the explanation of neurodegenerative processes and the production of nitric oxide could be involved in the pathophysiology of spinal cord injury by transient ischemia.  相似文献   

15.
1. Small doses (1-10mug) of colchicine injected into the ventral horn of the spinal cord of the chicken caused paralysis in the legs. 2. Colchicine had no effect on the incorporation of leucine into proteins of the spinal cord but markedly decreased the total amount of protein flowing into the axons of the sciatic nerve. 3. This axonal flow of protein proceeded at two rates: a high rate (300mm/day) and a low rate (2mm/day). Although both groups of proteins were affected, the slow transport of protein was more profoundly blocked by colchicine. 4. The results suggest that axonal flow is dependent on the neurotubular system in the axon.  相似文献   

16.
Neuropathic pain is a severe diabetes complication and its treatment is not satisfactory. It is associated with neuroinflammation-related events that participate in pain generation and chronicization. Prokineticins are a new family of chemokines that has emerged as critical players in immune system, inflammation and pain. We investigated the role of prokineticins and their receptors as modulators of neuropathic pain and inflammatory responses in experimental diabetes. In streptozotocin-induced-diabetes in mice, the time course expression of prokineticin and its receptors was evaluated in spinal cord and sciatic nerves, and correlated with mechanical allodynia. Spinal cord and sciatic nerve pro- and anti-inflammatory cytokines were measured as protein and mRNA, and spinal cord GluR subunits expression studied. The effect of preventive and therapeutic treatment with the prokineticin receptor antagonist PC1 on behavioural and biochemical parameters was evaluated. Peripheral immune activation was assessed measuring macrophage and T-helper cytokine production. An up-regulation of the Prokineticin system was present in spinal cord and nerves of diabetic mice, and correlated with allodynia. Therapeutic PC1 reversed allodynia while preventive treatment blocked its development. PC1 normalized prokineticin levels and prevented the up-regulation of GluN2B subunits in the spinal cord. The antagonist restored the pro-/anti-inflammatory cytokine balance altered in spinal cord and nerves and also reduced peripheral immune system activation in diabetic mice, decreasing macrophage proinflammatory cytokines and the T-helper 1 phenotype. The prokineticin system contributes to altered sensitivity in diabetic neuropathy and its inhibition blocked both allodynia and inflammatory events underlying disease.  相似文献   

17.
《Life sciences》1991,49(17):PL113-PL118
The role of amino acid (AA) neurotransmitters in the spinal cord has been primarily studied using in vitro preparations and histochemical methods. The technology necessary to estimate AA levels in an intact animal has only recently become available. Such an investigation could yield valuable information regarding the segmental neurochemical environment. We measured the release of AAs into the rabbit lumbar spinal cord in response to sciatic nerve and transcranial stimulation with stereotaxically placed microdialysis catheters. Samples were obtained periodically during 90 minutes of continuous stimulation of either the left or right sciatic nerve, or motor cortex. Quantification of γ-amino butyric acid (GABA), aspartate, glutamate, glycine, and taurine was performed using high pressure liquid chromatography (HPLC). Adequate neural excitation was verified by recording somatosensory evoked potentials (SSEPs) or corticomotor evoked potentials (CMEPs). Sensory activation at intensities sufficient to activate small and large diameter peripheral fibers of the ipsilateral (to the microdialysis probe) sciatic nerve produced a significant change only in segmental glycine levels. Contralateral sciatic nerve stimulation failed to evoke a significant elevation of AAs. In addition, a significant increase in the release of glycine and taurine was measured after 90 minutes of transcranial stimulation. SSEP and CMEP components repeatedly showed adequate activation of primary afferent, descending motor fiber pathways, and segmental interneuron pools during dialysis sampling. Our data are consistent with the hypothesis that suprasegmental influence over peripheral afferent and motor activity may be, in part, through these amino acid neurotransmitters in the rabbit lumbar spinal cord.  相似文献   

18.
本文描述了大鼠脊髓L_1节段后柱、后索、侧索和前角的诱发电位及其损伤后的变化,并观察了切断L_4、L_5脊神经背、腹根与横断高位颈髓对电位的影响,以进行行电位来源分析。结果可见,上述四个区域的诱发电位基本由早反应三相波和晚反应组成。分别电解损毁这些部位后,电位波幅均普遍降低,晚期反应较早反应降低明显。后柱或后索受损对电位影响最大。局部损毁后可见L_1及T_(13)水平的硬膜上电位改变明显,尤其晚反应减弱、波峰平坦。反应时值与潜伏时未见明显改变。切断L_4脊神经背、腹根后、电位基本消失。去大脑对电位未见明显影响。结果表明,刺激坐骨神经诱发的脊髓电位起源于低位腰段传入神经和脊髓内多通路的兴奋传导,在一定程度上受腹根逆行活动的影响,与大脑及脊髓下行传导束活动无直接联系。脊髓诱发电位的幅度与波形改变可作为脊髓损伤的判断指标之一。  相似文献   

19.
In the present experiments the effect of systemic capsaicin treatment on the retrograde labelling of sensory ganglion cells was studied following the injection of choleratoxin B subunit-horseradish peroxidase conjugate (CTX-HRP) into intact and chronically transected peripheral nerves. In the control rats CTX-HRP injected into intact sciatic nerves labelled medium and large neurons with a mean cross-sectional area of 1,041 +/- 39 gm2. However, after injection of the conjugate into chronically transected sciatic nerves of the control rats, many small cells were also labelled, shifting the mean cross-sectional area of the labelled cells to 632 +/- 118 microm2. Capsaicin pretreatment per se induced a moderate but significant decrease in the mean cross-sectional area of the labelled neurons (879 +/- 79 microm2). More importantly, systemic pretreatment with capsaicin prevented the peripheral nerve lesion-induced labelling of small cells. Thus, the mean cross-sectional areas of labelled neurons relating to the intact and transected sciatic nerves, respectively, did not differ significantly. These findings provide direct evidence for a phenotypic switch of capsaicin-sensitive nociceptive neurons after peripheral nerve injury, and suggest that lesion-induced morphological changes in the spinal cord may be related to specific alterations in the chemistry of C-fibre afferent neurons rather than to a sprouting response of A-fibre afferents.  相似文献   

20.
1. Several lines of evidence suggest that cytokines and their receptors are initiators of changes in the activity of dorsal root ganglia (DRG) neurons, but their cellular distribution is still very limited or controversial. Therefore, the goal of present study was to investigate immunohistochemical distribution of TNF-alpha and TNF receptor-1 (TNFR1) proteins in the rat DRG following three types of nerve injury. 2. The unilateral sciatic and spinal nerve ligation as well as the sciatic nerve transection were used to induce changes in the distribution of TNF-alpha and TNFR1 proteins. The TNF-alpha and TNFR1 immunofluorescence was assessed in the L4-L5 DRG affected by nerve injury for 1 and 2 weeks, and compared with the contralateral ones and those removed from naive or sham-operated rats. A part of the sections was incubated for simultaneous immunostaining for TNF-alpha and ED-1. The immunofluorescence brightness was measured by image analysis system (LUCIA-G v4.21) to quantify immunostaining for TNF-alpha and TNFR1 in the naive, ipsi- and contralateral DRG following nerve injury. 3. The ipsilateral L4-L5 DRG and their contralateral counterparts of the rats operated for nerve injury displayed an increased immunofluorescence (IF) for TNF-alpha and TNFR1 when compared with DRG harvested from naive or sham-operated rats. The TNFalpha IF was increased bilaterally in the satellite glial cells (SGC) and contralaterally in the neuronal nuclei following sciatic and spinal nerve ligature. The neuronal bodies and their SGC exhibited bilaterally enhanced IF for TNF-alpha after sciatic nerve transection for 1 and 2 weeks. In addition, the affected DRG were invaded by ED-1 positive macrophages which displayed simultaneously TNFalpha IF. The ED-1 positive macrophages were frequently located near the neuronal bodies to occupy a position of the satellites. 4. The sciatic and spinal nerve ligature resulted in an increased TNFR1 IF in the neuronal bodies of both ipsi- and contralateral DRG. The sciatic nerve ligature for 1 week induced a rise in TNFR1 IF in the contralateral DRG neurons and their SGC to a higher level than in the ipsilateral ones. In contrast, the sciatic nerve ligature for 2 weeks caused a similar increase of TNFR1 IF in the neurons and their SGC of both ipsi- and contralateral DRG. The spinal nerve ligature or sciatic nerve transection resulted in an increased TNFR1 IF located at the surface of the ipsilateral DRG neurons, but dispersed IF in the contralateral ones. In addition, the SGC of the contralateral in contrast to ipsilateral DRG displayed a higher TNFR1 IF. 5. Our results suggest more sources of TNF-alpha protein in the ipsilateral and contralateral DRG following unilateral nerve injury including macrophages, SGC and primary sensory neurons. In addition, the SGC and macrophages, which became to be satellites, are well positioned to regulate activity of the DRG neurons by production of TNF-alpha molecules. Moreover, the different cellular distribution of TNFR1 in the ipsi- and contralateral DRG may reflect different pathways by which TNF-alpha effect on the primary sensory neurons can be mediated following nerve injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号