首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative assay for Xenopus 5S RNA gene transcription in vitro   总被引:37,自引:0,他引:37  
  相似文献   

2.
Sequences for 5S RNA from somatic cells and oocytes of Xenopus mulleri are presented. Comparison with sequences previously given for Xenopus laevis indicates that the somatic 5S RNA genes of each species are more closely related to each other than either is to its own set of oocyte genes, suggesting that somatic and oocyte genes within each species are evolving independently. However, detailed analysis of sequence variants in each species suggests that there is a mechanism which allows occasional genetic exchanges between somatic and oocyte-specific genes. Possible genetic mechanisms which allow such an exchange are discussed.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Species variation in transcription factor IIIA   总被引:4,自引:3,他引:1       下载免费PDF全文
  相似文献   

10.
Somatic and oocyte 5S rRNAs from the liver and unfertilized eggs of the loach (Misgurnus fossilis have been sequenced and found to differ in six nucleotides. All the substitutions are confined to the 5'-half of the molecules; 4 of them are pyrimidine-pyrimidine substitutions, and 2 are purine-pyrimidine ones. Considerable differences, both in the position and the character of substitutions, have been established when these 5S rRNAs were compared with somatic and oocyte 5S rRNAs from Xenopus borealis and Xenopus laevis. Among the known primary structures, somatic 5S rRNA of M. fossilis is most similar to trout 5S rRNA.  相似文献   

11.
We have determined the DNA sequences encoding 18 S ribosomal RNA in man and in the frog, Xenopus borealis. We have also corrected the Xenopus laevis 18 S sequence: an A residue follows G-684 in the sequence. These and other available data provide a number of representative examples of variation in primary structure and secondary modification of 18 S ribosomal RNA between different groups of vertebrates. First, Xenopus laevis and Xenopus borealis 18 S ribosomal genes differ from each other by only two base substitutions, and we have found no evidence of intraspecies heterogeneity within the 18 S ribosomal DNA of Xenopus (in contrast to the Xenopus transcribed spacers). Second, the human 18 S sequence differs from that of Xenopus by approx. 6.5%. About 4% of the differences are single base changes; the remainder comprise insertions in the human sequence and other changes affecting several nucleotides. Most of these more extensive changes are clustered in a relatively short region between nucleotides 190 and 280 in the human sequence. Third, the human 18 S sequence differs from non-primate mammalian sequences by only about 1%. Fourth, nearly all of the 47 methyl groups in mammalian 18 S ribosomal RNA can be located in the sequence. The methyl group distribution corresponds closely to that in Xenopus, but there are several extra methyl groups in mammalian 18 S ribosomal RNA. Finally, minor revisions are made to the estimated numbers of pseudouridines in human and Xenopus 18 S ribosomal RNA.  相似文献   

12.
13.
14.
15.
K E Joho  M K Darby  E T Crawford  D D Brown 《Cell》1990,61(2):293-300
A 5S RNA binding protein (p43) in Xenopus is a major constituent of oocytes and comprises part of a 42S ribonucleoprotein storage particle. We have cloned and sequenced p43 cDNA from X. laevis and X. borealis as well as the cDNA for X. borealis TFIIIA. Like TFIIIA, p43 has nine zinc fingers, seven of which are exactly the same size as their counterparts in TFIIIA. Amino acid homology between the two proteins is restricted mainly to conserved residues characteristic of zinc fingers. In contrast to TFIIIA, which binds specifically to both 5S RNA and 5S RNA genes, p43 binds exclusively to 5S RNA.  相似文献   

16.
R C Peterson  J L Doering  D D Brown 《Cell》1980,20(1):131-141
The somatic 5S DNA from X. borealis (Xbs 5S DNA) and X. laevis (Xis 5S DNA) and a minor oocyte-specific 5S DNA from X. laevis (Xit 5S DNA) have been purified, and individual repeating units have been cloned and sequenced. The two somatic 5S DNAs differ from the major oocyte 5S DNAs in having GC-rich spacers, homogeneous repeat lengths and no "pseudogenes." The somatic 5S DNAs from the two species have similar spacer sequences with differences due to single base changes and insertions/deletions. The spacer of the minor oocyte-specific 5S DNA (Xit) has the AT-rich sequence characteristic of the major oocyte 5S DNAs from X. laevis and X. borealis, and contains one duplication that has diverged approximately 40%. Like the somatic 5S DNAs, Xit 5S DNA has a homogeneous length repeat and a unique nucleotide sequence in its spacer. The presence of variable-length spacer regions in a multigene family correlates with variables numbers of a simple sequence in the spacer regions.  相似文献   

17.
Xenopus 5S RNA genes exhibit a pattern of differential expression during development in which some members (oocyte-type) are transcribed only in oocytes, while others (somatic-type) are expressed in both oocytes and somatic cells. Using cloned DNA probes specific for each gene type, we determined the positions of these genes on Xenopus metaphase chromosomes by in situ hybridization. Somatic-type 5S genes in both X. laevis and X. borealis are located at the distal end of the long arm of only one chromosome (number 9). The oocyte-type 5S RNA genes are found at the distal ends of the long arms of most Xenopus chromosomes, including chromosome 9. Thus, large scale differences in chromosomal location cannot explain the selective expression of these genes, as suggested previously.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号