首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the development of Caenorhabditis elegans, through cell divisions, a total of exactly 1090 cells are generated, 131 of which undergo programmed cell death (PCD) to result in an adult organism comprising 959 cells. Of those 131, exactly 113 undergo PCD during embryogenesis, subdivided across the cell lineages in the following fashion: 98 for AB lineage; 14 for MS lineage; and 1 for C lineage. Is there a law underlying these numbers, and if there is, what could it be? Here we wish to show that the count of the cells undergoing PCD complies with the cipher laws related to the algorithms of Shor and of Grover.  相似文献   

2.
When newly hatched Caenorhabditis elegans larvae are starved, their primordial germ cells (PGCs) arrest in the post-S phase. This starvation-induced PGC arrest is mediated by the DAF-18/PTEN-AKT-1/PKB nutrient-sensing pathway. Here, we report that the conserved spindle assembly checkpoint (SAC) component MDF-1/MAD1 is required for the PGC arrest. We identified 2 Akt kinase phosphorylation sites on MDF-1. Expression of a non-phosphorylatable mutant MDF-1 partially suppressed the defect in the starvation-induced PGC arrest in L1 larvae lacking DAF-18, suggesting that MDF-1 regulates germ cell proliferation as a downstream target of AKT-1, thereby demonstrating a functional link between cell-cycle regulation by the SAC components and nutrient sensing by DAF-18-AKT-1 during post-embryonic development. The phosphorylation status of MDF-1 affects its binding to another SAC component, MDF-2/MAD2. The loss of MDF-2 or another SAC component also caused inappropriate germ cell proliferation, but the defect was less severe than that caused by mdf-1 hemizygosity, suggesting that MDF-1 causes the PGC arrest by two mechanisms, one involving MDF-2 and another that is independent of other SAC components.  相似文献   

3.
It is important for human life in space to study the effects of environmental factors during spaceflight on a number of physiological phenomena. Apoptosis plays important roles in development and tissue homeostasis in metazoans. In this study, we have analyzed apoptotic activity in germ cells of the nematode C. elegans, following spacefight. Comparison of the number of cell corpses in wild type or ced-1 mutants, grown under either ground or spaceflight conditions, showed that both pachytene-checkpoint apoptosis and physiological apoptosis in germ cells occurred normally under spaceflight conditions. In addition, the expression levels of the checkpoint and apoptosis related genes are comparable between spaceflight and ground conditions. This is the first report documenting the occurrence of checkpoint apoptosis in the space environment and suggests that metazoans, including humans, would be able to eliminate cells that have failed to repair DNA lesions introduced by cosmic radiation during spaceflight.  相似文献   

4.
We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.  相似文献   

5.
Comparative genomic analysis of important signaling pathways in Caenorhabditis briggsae and Caenorhabditis elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p < 0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable.  相似文献   

6.
Ultraviolet (UV) radiation-induced DNA damage evokes a complex network of molecular responses, which culminate in DNA repair, cell cycle arrest and apoptosis. Here, we provide an in-depth characterization of the molecular pathway that mediates UV-C-induced apoptosis of meiotic germ cells in the nematode Caenorhabditis elegans. We show that UV-C-induced DNA lesions are not directly pro-apoptotic. Rather, they must first be recognized and processed by the nucleotide excision repair (NER) pathway. Our data suggest that NER pathway activity transforms some of these lesions into other types of DNA damage, which in turn are recognized and acted upon by the homologous recombination (HR) pathway. HR pathway activity is in turn required for the recruitment of the C. elegans homolog of the yeast Rad9-Hus1-Rad1 (9-1-1) complex and activation of downstream checkpoint kinases. Blocking either the NER or HR pathway abrogates checkpoint pathway activation and UV-C-induced apoptosis. Our results show that, following UV-C, multiple DNA repair pathways can cooperate to signal to the apoptotic machinery to eliminate potentially hazardous cells.  相似文献   

7.
Caenorhabditis elegans reticulon interacts with RME-1 during embryogenesis   总被引:4,自引:0,他引:4  
Reticulon (RTN) family proteins are localized in the endoplasmic reticulum (ER). At least four different RTN genes have been identified in mammals, but in most cases, the functions of the encoded proteins except mammalian RTN4-A and RTN4-B are unknown. Each RTN gene produces 1-3 proteins by different promoters and alternative splicing. In Caenorhabditis elegans, there is a single gene (rtn gene) encoding three reticulon proteins, nRTN-A, B, and C. mRNA of nRTN-C is expressed in germ cells and embryos. However, nRTN-C protein is only expressed during embryogenesis and rapidly disappears after hatch. By yeast two-hybrid screening, two clones encoding the same C-terminal region of RME-1, a protein functioning in the endocytic recycling, were isolated. These findings suggest that nRTN-C functions in the endocytic pathway during embryogenesis.  相似文献   

8.
Phospholipase Cepsilon (PLCepsilon) is a novel class of phosphoinositide-specific PLC with unknown physiological functions. Here, we present the first genetic analysis of PLCepsilon in an intact organism, the nematode Caenorhabditis elegans. Ovulation in C. elegans is dependent on an inositol 1,4,5-trisphosphate (IP(3)) signaling pathway activated by the receptor tyrosine kinase LET-23. We generated deletion mutants of the gene, plc-1, encoding C. elegans PLCepsilon. We observed a novel ovulation phenotype whereby oocytes are trapped in the spermatheca due to delayed dilation of the spermatheca-uterine valve. The expression of plc-1 in the adult spermatheca is consistent with its involvement in regulation of ovulation. On the other hand, we failed to observe genetic interaction of plc-1 with let-23-mediated IP(3) signaling pathway genes, suggesting a complex mechanism for control of ovulation.  相似文献   

9.
10.
We have identified and characterized a monoclonal antibody, F2-P3E3, that recognizes a Caenorhabditis elegans apoptotic epitope expressed within phagocytic cells, which is conserved in four other nematode species. In C. elegans, F2-P3E3 staining requires both programmed cell death and phagocytosis. We show that the F2-P3E3 epitope is expressed within embryonic intestinal cells, which act as phagocytes but do not undergo programmed cell death. F2-P3E3 staining is present within LMP-1::GFP labeled organelles in the intestinal primordium and is coincident with persistent DNA that has been phagocytosed in nuc-1(-) embryos, suggesting that it labels phagosomes. While apoptotic events are typically isolated in C. elegans, F2-P3E3 staining is commonly found within adjacent cells. This observation suggests that F2-P3E3 might recognize an epitope expressed in multiple cells in response to signals from a single corpse. F2-P3E3 represents a new tool for studying cell death in C. elegans.  相似文献   

11.
The spindle assembly checkpoint (SAC) is a ‘wait-anaphase'' mechanism that has evolved in eukaryotic cells in response to the stochastic nature of chromosome–spindle attachments. In the recent past, different aspects of the SAC regulation have been described. However, the role of microRNAs in the SAC is vaguely understood. We report here that Mad1, a core SAC protein, is repressed by human miR-125b. Mad1 serves as an adaptor protein for Mad2 – which functions to inhibit anaphase entry till the chromosomal defects in metaphase are corrected. We show that exogenous expression of miR-125b, through downregulation of Mad1, delays cells at metaphase. As a result of this delay, cells proceed towards apoptotic death, which follows from elevated chromosomal abnormalities upon ectopic expression of miR-125b. Moreover, expressions of Mad1 and miR-125b are inversely correlated in a variety of cancer cell lines, as well as in primary head and neck tumour tissues. We conclude that increased expression of miR-125b inhibits cell proliferation by suppressing Mad1 and activating the SAC transiently. We hypothesize an optimum Mad1 level and thus, a properly scheduled SAC is maintained partly by miR-125b.  相似文献   

12.
Xu J  Sun X  Jing Y  Wang M  Liu K  Jian Y  Yang M  Cheng Z  Yang C 《Cell research》2012,22(5):886-902
During meiotic cell division, proper chromosome synapsis and accurate repair of DNA double strand breaks (DSBs) are required to maintain genomic integrity, loss of which leads to apoptosis or meiotic defects. The mechanisms underlying meiotic chromosome synapsis, DSB repair and apoptosis are not fully understood. Here, we report that the chromodomain-containing protein MRG-1 is an important factor for genomic integrity in meiosis in Caenorhabditis elegans. Loss of mrg-1 function resulted in a significant increase in germ cell apoptosis that was partially inhibited by mutations affecting DNA damage checkpoint genes. Consistently, mrg-1 mutant germ lines exhibited SPO-11-generated DSBs and elevated exogenous DNA damage-induced chromosome fragmentation at diakinesis. In addition, the excessive apoptosis in mrg-1 mutants was partially suppressed by loss of the synapsis checkpoint gene pch-2, and a significant number of meiotic nuclei accumulated at the leptotene/zygotene stages with an elevated level of H3K9me2 on the chromatin, which was similarly observed in mutants deficient in the synaptonemal complex, suggesting that the proper progression of chromosome synapsis is likely impaired in the absence of mrg-1. Altogether, these findings suggest that MRG-1 is critical for genomic integrity by promoting meiotic DSB repair and synapsis progression in meiosis.  相似文献   

13.
The Rho GTPase members and their effector proteins, such as the Wiskott-Aldrich syndrome protein (WASP), play critical roles in regulating actin dynamics that affect cell motility, endocytosis, cell division, and transport. It is well established that Caenorhabditis elegans wsp-1 plays an essential role in embryonic development. We were interested in the role of the C. elegans protein WSP-1 in the adult nematode. In this report, we show that a deletion mutant of wsp-1 exhibits a strong sensitivity to the neuromuscular inhibitor aldicarb. Transgenic rescue experiments demonstrated that neuronal expression of WSP-1 rescued this phenotype and that it required a functional WSP-1 Cdc42/Rac interactive binding domain. WSP-1-GFP fusion protein was found localized presynaptically, immediately adjacent to the synaptic protein RAB-3. Strong genetic interactions with wsp-1 and other genes involved in different stages of synaptic transmission were observed as the wsp-1(gm324) mutation suppresses the aldicarb resistance seen in unc-13(e51), unc-11(e47), and snt-1 (md290) mutants. These results provide genetic and pharmacological evidence that WSP-1 plays an essential role to stabilize the actin cytoskeleton at the neuronal active zone of the neuromuscular junction to restrain synaptic vesicle release.  相似文献   

14.
The spindle checkpoint delays anaphase onset until all chromosomes have attached properly to the mitotic spindle. Checkpoint signal is generated at kinetochores that are not bound with spindle microtubules or not under tension. Unattached kinetochores associate with several checkpoint proteins, including BubR1, Bub1, Bub3, Mad1, Mad2, and CENP-E. I herein show that BubR1 is important for the spindle checkpoint in Xenopus egg extracts. The protein accumulates and becomes hyperphosphorylated at unattached kinetochores. Immunodepletion of BubR1 greatly reduces kinetochore binding of Bub1, Bub3, Mad1, Mad2, and CENP-E. Loss of BubR1 also impairs the interaction between Mad2, Bub3, and Cdc20, an anaphase activator. These defects are rescued by wild-type, kinase-dead, or a truncated BubR1 that lacks its kinase domain, indicating that the kinase activity of BubR1 is not essential for the spindle checkpoint in egg extracts. Furthermore, localization and hyperphosphorylation of BubR1 at kinetochores are dependent on Bub1 and Mad1, but not Mad2. This paper demonstrates that BubR1 plays an important role in kinetochore association of other spindle checkpoint proteins and that Mad1 facilitates BubR1 hyperphosphorylation at kinetochores.  相似文献   

15.
Cell invasion is a tightly controlled process occurring during development and tumor progression. The nematode Caenorhabditis elegans serves as a genetic model to study cell invasion during normal development. In the third larval stage, the anchor cell in the somatic gonad first induces and then invades the adjacent epidermal vulval precursor cells. The homolog of the Evi-1 oncogene, egl-43, is necessary for basement membrane destruction and anchor cell invasion. egl-43 is part of a regulatory network mediating cell invasion downstream of the fos-1 proto-oncogene. In addition, EGL-43 is required to specify the cell fates of ventral uterus cells downstream of or in parallel with LIN-12 NOTCH. Comparison with mammalian Evi-1 suggests a conserved pathway controlling cell invasion and cell fate specification.  相似文献   

16.
The Caenorhabditis elegans vulva provides a simple model for the genetic analysis of pattern formation and organ morphogenesis during metazoan development. We have discovered an essential role for the polarity protein PAR-1 in the development of the vulva. Postembryonic RNA interference of PAR-1 causes a protruding vulva phenotype. We found that depleting PAR-1 during the development of the vulva has no detectable effect on fate specification or precursor proliferation, but instead seems to specifically alter morphogenesis. Using an apical junction-associated GFP marker, we discovered that PAR-1 depletion causes a failure of the two mirror-symmetric halves of the vulva to join into a single, coherent organ. The cells that normally form the ventral vulval rings fail to make contact or adhere and consequently form incomplete toroids, and dorsal rings adopt variably abnormal morphologies. We also found that PAR-1 undergoes a redistribution from apical junctions to basolateral domains during morphogenesis. Despite a known role for PAR-1 in cell polarity, we have observed no detectable differences in the distribution of various markers of epithelial cell polarity. We propose that PAR-1 activity at the cell cortex is critical for mediating cell shape changes, cell surface composition, or cell signaling during vulval morphogenesis.  相似文献   

17.
18.
Apoptotic cell death is an integral part of cell turnover in many tissues, and proper corpse clearance is vital to maintaining tissue homeostasis in all multicellular organisms. Even in tissues with high cellular turnover, apoptotic cells are rarely seen because of efficient clearance mechanisms in healthy individuals. In Caenorhabditis elegans, two parallel and partly redundant conserved pathways act in cell corpse engulfment. The pathway for cytoskeletal rearrangement requires the small GTPase CED-10 Rac1 acting for an efficient surround of the dead cell. The CED-10 Rac pathway is also required for the proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. Parkin, the mammalian homolog of the C. elegans PDR-1, interacts with Rac1 in aged human brain and it is also implicated with actin dynamics and cytoskeletal rearrangements in Parkinsons''s disease, suggesting that it might act on engulfment. Our genetic and biochemical studies indicate that PDR-1 inhibits apoptotic cell engulfment and DTC migration by ubiquitylating CED-10 for degradation.  相似文献   

19.
Glucose 6-phosphate dehydrogenase (G6PD) deficiency, known as favism, is classically manifested by hemolytic anemia in human. More recently, it has been shown that mild G6PD deficiency moderately affects cardiac function, whereas severe G6PD deficiency leads to embryonic lethality in mice. How G6PD deficiency affects organisms has not been fully elucidated due to the lack of a suitable animal model. In this study, G6PD-deficient Caenorhabditis elegans was established by RNA interference (RNAi) knockdown to delineate the role of G6PD in animal physiology. Upon G6PD RNAi knockdown, G6PD activity was significantly hampered in C. elegans in parallel with increased oxidative stress and DNA oxidative damage. Phenotypically, G6PD-knockdown enhanced germ cell apoptosis (2-fold increase), reduced egg production (65% of mock), and hatching (10% of mock). To determine whether oxidative stress is associated with G6PD knockdown-induced reproduction defects, C. elegans was challenged with a short-term hydrogen peroxide (H2O2). The early phase egg production of both mock and G6PD-knockdown C. elegans were significantly affected by H2O2. However, H2O2-induced germ cell apoptosis was more dramatic in mock than that in G6PD-deficient C. elegans. To investigate the signaling pathways involved in defective oogenesis and embryogenesis caused by G6PD knockdown, mutants of p53 and mitogen-activated protein kinase (MAPK) pathways were examined. Despite the upregulation of CEP-1 (p53), cep-1 mutation did not affect egg production and hatching in G6PD-deficient C. elegans. Neither pmk-1 nor mek-1 mutation significantly affected egg production, whereas sek-1 mutation further decreased egg production in G6PD-deficient C. elegans. Intriguingly, loss of function of sek-1 or mek-1 dramatically rescued defective hatching (8.3- and 9.6-fold increase, respectively) induced by G6PD knockdown. Taken together, these findings show that G6PD knockdown reduces egg production and hatching in C. elegans, which are possibly associated with enhanced oxidative stress and altered MAPK pathways, respectively.  相似文献   

20.
The GTPase-activating proteins for Rho family GTPases (RhoGAP) transduce diverse intracellular signals by negatively regulating Rho family GTPase-mediated pathways. In this study, we have cloned and characterized a novel RhoGAP for Rac1 and Cdc42, termed RRC-1, from Caenorhabditis elegans. RRC-1 was highly homologous to mammalian p250GAP and promoted GTP hydrolysis of Rac1 and Cdc42 in cells. The rrc-1 mRNA was expressed in all life stages. Using an RRC-1::GFP fusion protein, we found that RRC-1 was localized to the coelomocytes, excretory cell, GLR cells, and uterine-seam cell in adult worms. These data contribute toward understanding the roles of Rho family GTPases in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号