首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized three analogues of 4-amino-5-fluorohexanoic acids as potential inactivators of γ-aminobutyric acid aminotransferase (GABA-AT), which were designed to combine the potency of their shorter chain analogue, 4-amino-5-fluoropentanoic acid (AFPA), with the greater enzyme selectivity of the antiepileptic vigabatrin (Sabril®). Unexpectedly, these compounds failed to inactivate or inhibit the enzyme, even at high concentrations. On the basis of molecular modeling studies, we propose that the GABA-AT active site has an accessory binding pocket that accommodates the vinyl group of vigabatrin and the fluoromethyl group of AFPA, but is too narrow to support the extra width of the distal methyl group in the synthesized analogues.  相似文献   

2.
The antiepilepsy drug vigabatrin (1; 4-aminohex-5-enoic acid; gamma-vinyl GABA) is a mechanism-based inactivator of the pyridoxal 5'-phosphate (PLP)-dependent enzyme gamma-aminobutyric acid aminotransferase (GABA-AT). Inactivation has been shown to proceed by two divergent mechanisms (Nanavati, S. M. and Silverman, R. B. (1991) J. Am. Chem. Soc. 113, 9341-9349), a Michael addition pathway (Scheme 2, pathway a) and an enamine pathway (Scheme 2, pathway b). Analogs of vigabatrin with a cyclopropyl or cyanocyclopropyl functionality in place of the vinyl group (2-5) were synthesized as potential inactivators of GABA-AT that can inactivate the enzyme only through a Michael addition pathway, but they were found to be only weak inhibitors of the enzyme.  相似文献   

3.
The antiepilepsy drug vigabatrin (1; 4-aminohex-5-enoic acid; γ-vinyl GABA) is a mechanism-based inactivator of the pyridoxal 5'-phosphate (PLP)-dependent enzyme γ-aminobutyric acid aminotransferase (GABA-AT). Inactivation has been shown to proceed by two divergent mechanisms (Nanavati, S. M. and Silverman, R. B. (1991) J. Am. Chem. Soc. 113, 9341–9349), a Michael addition pathway (Scheme 2, pathway a) and an enamine pathway (Scheme 2, pathway b). Analogs of vigabatrin with a cyclopropyl or cyanocyclopropyl functionality in place of the vinyl group (2–5) were synthesized as potential inactivators of GABA-AT that can inactivate the enzyme only through a Michael addition pathway, but they were found to be only weak inhibitors of the enzyme.  相似文献   

4.
Gamma-aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate-dependent enzyme responsible for the degradation of the inhibitory neurotransmitter GABA. GABA-AT is a validated target for antiepilepsy drugs because its selective inhibition raises GABA concentrations in brain. The antiepilepsy drug, gamma-vinyl-GABA (vigabatrin) has been investigated in the past by various biochemical methods and resulted in several proposals for its mechanisms of inactivation. In this study we solved and compared the crystal structures of pig liver GABA-AT in its native form (to 2.3-A resolution) and in complex with vigabatrin as well as with the close analogue gamma-ethynyl-GABA (to 2.3 and 2.8 A, respectively). Both inactivators form a covalent ternary adduct with the active site Lys-329 and the pyridoxal 5'-phosphate (PLP) cofactor. The crystal structures provide direct support for specific inactivation mechanisms proposed earlier on the basis of radio-labeling experiments. The reactivity of GABA-AT crystals with the two GABA analogues was also investigated by polarized absorption microspectrophotometry. The spectral data are discussed in relation to the proposed mechanism. Intriguingly, all three structures revealed a [2Fe-2S] cluster of yet unknown function at the center of the dimeric molecule in the vicinity of the PLP cofactors.  相似文献   

5.
Compounds that inhibit gamma-aminobutyric acid aminotransferase exhibit anticonvulsant activity; vigabatrin is a known irreversible inhibitor of this enzyme and anticonvulsant drug. Conformationally-restricted, five-membered- and six-membered-ring vigabatrin analogs were synthesized and tested as inhibitors of gamma-aminobutyric acid aminotransferase. Two monofluorinated compounds, 4 and 5, are time-dependent inhibitors of the enzyme, and their potencies are comparable to that of vigabatrin. Compounds 6 and 7 are weak reversible inhibitors.  相似文献   

6.
(Z)- and (E)-4-amino-2-(trifluoromethyl)-2-butenoic acid (4 and 5, respectively) were synthesized and investigated as potential mechanism-based inactivators of gamma-aminobutyric acid aminotransferase (GABA-AT) in a continuing effort to map the active site of this enzyme. The core alpha-trifluoromethyl-alpha,beta-unsaturated ester moiety was prepared via a Reformatsky/reductive elimination coupling of the key intermediates tert-butyl 2,2-dichloro-3,3,3-trifluoropropionate and N,N-bis(tert-butoxy-carbonyl)glycinal. Both 4 and 5 inhibited GABA-AT in a time-dependent manner, but displayed non-pseudo-first-order inactivation kinetics; initially, the inactivation rate increased with time. Further investigation demonstrated that the actual inactivator is generated enzymatically from 4 or 5. This inactivating species is released from the active site prior to inactivation, and as a result, 4 and 5 cannot be defined as mechanism-based inactivators. Furthermore, 4 and 5 are alternate substrates for GABA-AT, transaminated by the enzyme with Km values of 0.74 and 20.5 mM, respectively. Transamination occurs approximately 276 and 305 times per inactivation event for 4 and 5, respectively. The enzyme also catalyzes the elimination of the fluoride ion from 4 and 5. A mechanism to account for these observations is proposed.  相似文献   

7.
Inhibition of gamma-aminobutyric acid aminotransferase (GABA-AT) increases the concentration of GABA, an inhibitory neurotransmitter in human brain, which could have therapeutic applications for a variety of neurological diseases, including epilepsy. On the basis of studies of several previously synthesized conformationally restricted GABA-AT inhibitors, (+/-)-(1S,2R,5S)-5-amino-2-fluorocyclohex-3-enecarboxylic acid (12) was designed as a mechanism-based inactivator. This compound was shown to irreversibly inhibit GABA-AT; substrate protects the enzyme from inactivation. Mechanistic experiments demonstrated the loss of one fluoride ion per active site during inactivation and the formation of N-m-carboxyphenylpyridoxamine 5'-phosphate (26), the same product generated by inactivation of GABA-AT by gabaculine (8). An elimination-aromatization mechanism is proposed to account for these results.  相似文献   

8.
A series of novel low molecular weight thiocarbamate esters (1e-6e) were synthesized and evaluated as inhibitors of human leukocyte elastase (HLE). The thiocarbamate esters studied consist of a substituted primary or secondary aliphatic or aromatic amine and a 1-phenyl-1H-tetrazole-5-thiol (Table I). The HLE catalyzed hydrolysis of N-methoxysuccinyl- L-Ala-L-Ala-L-Pro-L-Val-p-nitroanilide substrate was utilized as the measure of inhibition. N-n-butyl, 1-phenyl-1H-tetrazole-5-thiocarbamate (1e) exhibited the highest inhibitory activity (k(obs) /[I] = 2.1 x 10(5) M(-1). min(-1) ) and N-allyl, 1-phenyl-1H-tetrazole-5-thiocarbamate (2e) (K(obs) /[I] = 6.1 x 10(4) M(-1). min(-1) ) exhibited the second highest inhibitory activity of all the thiocarbamates. The aromatic N-phenyl, 1-phenyl-1H-tetrazole-5-thiocarbamate (4e) showed the lowest inhibitory activity (K(obs) /[I] = 1.9 x 10(2) M(-1). min(-1) ) among the N-monosubstituted derivatives, similar to that of N-ethyl-N-n-butyl, 1-phenyl-1H-tetrazole-5-thiocarbamate (5e) (K(obs) /[I] = 1.8 x 10(2) M(-1).min(-1) ). The N-isopropyl, 1-phenyl-1H-tetrazole-5-thiocarbamate (3e) (K(obs) /[I] = 3.3 x 10(3) M(-1).min(-1) ) was about 10 fold more active than (4e) and N, N-diisopropyl, 1-phenyl-1H-tetrazole- 5-thiocarbamate (6e) showed no inhibitory activity against HLE. In the present work less than 3% of HLE specific activity was regained after 24 hours incubation with each of the tested N-monosubstituted thiocarbamates (1e-4e). The time-dependent inhibition of HLE by the thiocarbamate compounds (1e-5e) seems to involve the interaction and possible chemical modification of one enzyme residue. Straight chain nonpolar aliphatic substituents on the nitrogen of the thiocarbamate functionality may be essential for high inhibitory activity. As the degree of substitution (branching) on the nitrogen of the thiocarbamate functionality increases the inhibitory activity of the compounds decreases. The time-dependent inhibition of HLE and the slow deacylation rates by the N-monosubstituted thiocarbamates are consistent with irreversible inhibition.  相似文献   

9.
The design, synthesis, and evaluation of novel gamma-aminobutyric acid aminotransferase (GABA-AT) inhibitors and inactivators can lead to the discovery of new GABA-related therapeutics. To this end, a series of aromatic amino acid compounds was synthesized to aid in the design of new inhibitors and inactivators of GABA-AT. All compounds were tested as competitive inhibitors of GABA-AT. The amino acids with benzylic amines were also tested as substrates for GABA-AT. It was found that these compounds were all poor competitive inhibitors of GABA-AT, but some were substrates of the enzyme, suggesting their utility as scaffolds for potential GABA-AT mechanism-based inactivators. Computer modeling was used to rationalize the substrate activity of the various compounds.  相似文献   

10.
Liu D  Pozharski E  Fu M  Silverman RB  Ringe D 《Biochemistry》2010,49(49):10507-10515
As a potential drug to treat neurological diseases, the mechanism-based inhibitor (S)-4-amino-4,5-dihydro-2-furancarboxylic acid (S-ADFA) has been found to inhibit the γ-aminobutyric acid aminotransferase (GABA-AT) reaction. To circumvent the difficulties in structural studies of a S-ADFA-enzyme complex using GABA-AT, l-aspartate aminotransferase (l-AspAT) from Escherichia coli was used as a model PLP-dependent enzyme. Crystal structures of the E. coli aspartate aminotransferase with S-ADFA bound to the active site were obtained via cocrystallization at pH 7.5 and 8. The complex structures suggest that S-ADFA inhibits the transamination reaction by forming adducts with the catalytic lysine 246 via a covalent bond while producing 1 equiv of pyridoxamine 5'-phosphate (PMP). Based on the structures, formation of the K246-S-ADFA adducts requires a specific initial binding configuration of S-ADFA in the l-AspAT active site, as well as deprotonation of the ε-amino group of lysine 246 after the formation of the quinonoid and/or ketimine intermediate in the overall inactivation reaction.  相似文献   

11.
Recently, we reported potent and small-sized beta-secretase (BACE1) inhibitors KMI-420 and KMI-429 in which we replaced the Glu residue at the P4 position of KMI-260 and KMI-360, respectively, with a 1H-tetrazole-5-carbonyl DAP (L-alpha,beta-diaminopropionic acid) residue. At the P1' position, these compounds contain one or two carboxylic acid groups, which are unfavorable for crossing the blood-brain barrier. Herein, we report BACE1 inhibitors with P1' carboxylic acid bioisosteres in order to develop practical anti-Alzheimer's disease drugs. Among them, tetrazole ring-containing compounds, KMI-570 (IC50=4.8 nM) and KMI-684 (IC50=1.2 nM), exhibited significantly potent BACE1 inhibitory activities.  相似文献   

12.
Analogs 1-8 of diaminopimelic acid (DAP) were synthesized and tested for inhibition of purified meso-DAP D-dehydrogenase from Bacillus sphaericus and of LL-DAP epimerase from Escherichia coli. The dehydrogenase was assayed by monitoring NADPH formation spectrophotometrically at 340 nm. N-Hydroxy DAP 4, N-amino DAP 5, and 4-methylene DAP 6 are substrates of the dehydrogenase with relative rates exceeding those of the meso isomers of the thia analogs 1ab, 2ab, and 3ab. DAP epimerase was assayed by coupling the epimerization of LL-DAP to DL-DAP (Km = 0.26 mM) with the dehydrogenase-catalyzed oxidation of DL-DAP by NADP. Lanthionine isomers 1ab and 1c were stronger inhibitors of the epimerase (Ki = 0.18 mM, Ki' = 0.67 mM, and Ki = 0.42 mM, respectively) than the corresponding meso-sulfoxide 2ab or the meso-sulfone 3ab. Other isomers of 2 and 3, as well as compounds 7 and 8, showed no epimerase inhibition. N-Hydroxy DAP 4 was the most potent competitive inhibitor (Ki = 0.0056 mM) of the epimerase, whereas N-amino DAP 5 is weaker (Ki = 2.9 mM) and 4-methylene DAP 6 is a noncompetitive inhibitor (Ki' = 0.95 mM). Although none of the analogs tested showed time-dependent inactivation of either enzyme, compounds 4, 5, 6, and 7 display substantial antibacterial activities. Possible mechanisms of epimerase inhibition and significance of the DAP pathway as a target for antibiotics are discussed.  相似文献   

13.
Clift MD  Ji H  Deniau GP  O'Hagan D  Silverman RB 《Biochemistry》2007,46(48):13819-13828
Gamma-aminobutyric acid aminotransferase (GABA-AT), a pyridoxal 5'-phosphate dependent enzyme, catalyzes the degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) to succinic semialdehyde with concomitant conversion of pyridoxal 5'-phosphate (PLP) to pyridoxamine 5'-phosphate (PMP). The enzyme then catalyzes the conversion of alpha-ketoglutarate to the excitatory neurotransmitter L-glutamate. Racemic 4-amino-3-fluorobutanoic acid (3-F-GABA) was shown previously to act as a substrate for GABA-AT, not for transamination, but for HF elimination. Here we report studies of the reaction catalyzed by GABA-AT on (R)- and (S)-3-F-GABA. Neither enantiomer is a substrate for transamination. Very little elimination from the (S)-enantiomer was detected using a coupled enzyme assay; The rate of elimination of HF from the (R)-enantiomer is at least 10 times greater than that for the (S)-enantiomer. The (R)-enantiomer is about 20 times more efficient as a substrate for GABA-AT catalyzed HF elimination than GABA is a substrate for transamination. The (R)-enantiomer also inhibits the transamination of GABA 10 times more effectively than the (S)-enantiomer. Using a combination of computer modeling and the knowledge that vicinal C-F and C-NH3+ bonds have a strong preference to align gauche rather than anti to each other, it is concluded that on binding of free 3-F-GABA to GABA-AT the optimal conformation places the C-NH3+ and C-F bonds gauche in the (R)-enantiomer but anti in the (S)-enantiomer. Furthermore, the dynamic binding process and the bioactive conformation of GABA bound to GABA-AT have been inferred on the basis of the different biological behavior of the two enantiomers of 3-F-GABA when they bind to the enzyme. The present study suggests that the C-F bond can be utilized as a conformational probe to explore the dynamic binding process and provide insight into the bioactive conformation of substrates, which cannot be easily determined by other biophysical approaches.  相似文献   

14.
Capillary electrophoresis with laser-induced fluorescence detection (CE-LIFD) coupled to in vivo microdialysis sampling was used in order to monitor simultaneously a drug and several neurotransmitters in the brain extracellular fluid. Determination of the antiepileptic drug vigabatrin and the amino acid neurotransmitters glutamate (Glu), l-aspartate (l-Asp) and gamma-aminobutyric acid (GABA) was performed on low-concentration samples which were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) and separated using a pH 9.2 75 mM sodium borate running buffer containing 60 mM sodium dodecyl sulfate (SDS) and 5mM hydroxypropyl-beta-cyclodextrin (HP-beta-CD). Glu, l-Asp and vigabatrin derivatized at a concentration of 1.0 x 10(-9) M, and GABA derivatized at a concentration of 5.0 x 10(-9) M, produced peaks with signal-to-noise ratios of 8:1, 8:1, 4:1 and 5:1, respectively. The nature of the neurotransmitter peaks found in rat brain microdialysates was confirmed by both electrophoretic and pharmacological validations. This method was used for monitoring vigabatrin and amino acid neurotransmitters in microdialysates from the rat striatum during intracerebral infusion of the drug and revealed rapid vigabatrin-induced changes in GABA and Glu levels. This original application of CE-LIFD coupled to microdialysis represents a powerful tool for pharmacokinetic/pharmacodynamic investigations.  相似文献   

15.
Purified gamma-aminobutyric acid aminotransferase (GABA-AT) from pig brain under certain conditions gave a single band on 12% NaDodSO(4)-PAGE, whereas two or three distinct bands were observed on 7.5% native PAGE. These multiple active species were isolated by 5% preparative gel electrophoresis and characterized by N-terminal sequencing and MALDI-TOF mass spectrometry. The results indicate that these active enzyme species are not GABA-AT isozymes in pig brain, but are the products of proteolysis of the N-terminus of GABA-AT, differing by 3, 7, and 12 residues from the full sequence (as deduced from the cDNA), respectively. Conditions for obtaining the nontruncated GABA-AT were found, and the potential cause for the proteolysis was determined. It was found that Na(2)EDTA inhibits the N-terminal cleavage during GABA-AT preparation from pig brain. The presence of Triton X-100 in the homogenization step is partially responsible for this proteolysis, and Mn(2+) strongly enhances the protease activity, suggesting the presence of a membrane-bound matrix metalloprotease that causes the N-terminal cleavage.  相似文献   

16.
Linear and cyclic analogues of cyclolinopeptide A (CLA) with two dipeptide segments (Val(5)-Pro(6) and Pro(6)-Pro(7)) replaced by their tetrazole derivatives were synthesized by the SPPS technique and cyclized using TBTU (O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate) reagent. The conformational properties of the c(Leu(1)-Ile(2)-Ile(3)-Leu(4)-Val(5)-Pro(6)-psi[CN(4)]-Ala(7)-Phe(8)-Phe(9)) were investigated by NMR and computational techniques. The overall solution structure of this cyclic peptide resembles that observed for the CLA in the solid state. These studies of cyclic tetrazole CLA analogue confirm that the 1,5-disubstituted tetrazole ring functions as an effective, well-tolerated cis-amide bond mimic in solution. The peptides were examined for their immunosuppressive activity in the humoral response test. For cyclic analogues the immunosuppressive activity, at low doses, is equal in magnitude to the activity presented by cyclosporin A and native CLA. The conformational and biological data seem indicate that the Pro-Pro-Phe-Phe moiety and the preservation of the CLA backbone conformation are important for immunosuppressive activity.  相似文献   

17.
A series of o-, m- and p-benzyl tetrazole derivatives 11ac has been designed, synthesized and evaluated as potential Angiotensin II AT1 receptor antagonists, based on urocanic acid. Compound 11b with tetrazole moiety at the m-position showed moderate, however, higher activity compared to the o- and p-counterpart analogues. Molecular modelling techniques were performed in order to extract their putative bioactive conformations and explore their binding modes.  相似文献   

18.
Storici P  Qiu J  Schirmer T  Silverman RB 《Biochemistry》2004,43(44):14057-14063
(1R,3S,4S)-3-Amino-4-fluorocyclopentane-1-carboxylic acid (7) was previously shown to be a mechanism-based inactivator of gamma-aminobutyric acid aminotransferase (GABA-AT) [Qiu, J. and Silverman, R. B. (2000) J. Med. Chem. 43, 706-720]. Two mechanisms were considered as reasonable possibilities, a Michael addition mechanism and an enamine mechanism. On the basis of a variety of chemical studies, including tedious radiolabeling experiments, it was concluded that inactivation by 7 proceeds by a Michael addition mechanism. Here, a crystal structure of 7 bound to pig liver GABA-AT is reported, which clearly demonstrates that the adduct formed is derived from an enamine mechanism. This represents another example of how crystallography is an important tool for elucidation of inactivation mechanisms.  相似文献   

19.
Gabaculine (5-amino-1,3-cyclohexadienylcarboxylic acid, 1), a naturally occurring neurotoxin isolated from Streptomyces toyocaenis, has been shown to be a mechanism-based inactivator of gamma-aminobutyric acid aminotransferase (GABA-AT) (Rando, R. R. Biochemistry 1977, 16, 4604). Inactivation results from reaction of gabaculine with the pyridoxal 5'-phosphate (PLP) cofactor. Two HPLC systems for isolating this inactivator-PLP adduct are described as well as a detailed characterization of the adduct, including the ultraviolet-visible spectrum, electrospray mass spectra, and NMR spectrum. The same spectral characterization of the chemically synthesized gabaculine-PLP adduct is also reported.  相似文献   

20.
To study the metabolic fate of conjugated linoleic acid isomers, we synthesized, in seven steps, from 1-heptyne, (6Z,10E,12Z)-octadeca-6,10,12-trienoic acid, (8Z,12E,14Z)-eicosa-8,12,14-trienoic acid, and their [1-(14)C]-analogs. In the case of (6Z,10E,12Z)-octadecatrienoic acid, a series of palladium-catalyzed cross-coupling reactions between 1-heptyne and (E)-1,2-dichloro-ethene, a coupling reaction with a Grignard reagent and cleavage of the dioxolane gave (E)-dodec-4-en-6-ynal 3. Stereoselective Wittig reaction between aldehyde 3 and triphenyl-[5-(tetrahydro-pyran-2-yloxy)-pentyl]-phosphonium provided a dienyne. Stereocontrolled reduction of the triple bond and replacement of the tetrahydropyranyl group by a bromine gave (5Z,9E,11Z)-1-bromo-heptadeca-5,9,11-triene 10. Formation of the alkenyl lithium derivative and carbonation with CO(2) furnished (6Z,10E,12Z)-octadecatrienoic acid. (8Z,12E,14Z)-eicosa-8,12,14-trienoic acid was obtained by the same route but using triphenyl-[5-(tetrahydro-pyran-2-yloxy)-heptyl]-phosphonium iodide for the Wittig reaction. [1-(14)C]-analogs were obtained from the bromides by carbonation with (14)CO2. In all cases, chemical or radiochemical purities were found to be better than 95% after purification by flash chromatography on silica gel (>99% after additional purification by RP-HPLC). Metabolism studies in animals are in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号