首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-frequency jet ventilation (HFJV) was studied in twelve deeply anesthetized, paralyzed dogs. Entrained volume and total expired volume were directly measured by integration of flow. Jet volume was computed from these measurements. Seven dogs were ventilated with a driving pressure of 10 psi at rates of 2 and 5 Hz for each of three mechanical loads: control, thoracoabdominal wrap, and histamine infusion. Both load conditions reduced total expired volume and entrained volume but had no effect on jet volume. Wrap reduced entrainment more at 2 Hz while the effect of histamine infusion was frequency independent. Control arterial blood gases demonstrated that PO2 was higher and PCO2 was lower during 2 Hz ventilation than during 5 Hz ventilation despite equivalent minute volumes. Five additional dogs were studied using control and wrap loads and an additional ventilator setting of 15 psi at 5 Hz. This group demonstrated that wrap reduces entrainment more at lower frequencies for ventilatory settings providing equivalent gas exchange. We conclude that increasing mechanical load reduces entrainment during HFJV and that this reduction is frequency dependent for restrictive loads.  相似文献   

2.
观察了高频双向喷射通气(HFTJV)时反喷驱动压和通气频率对麻醉犬CO_2排除效能的影响以及潮气量(V_T)的变化特点。结果表明:在通气频率、正喷驱动压及吸/呼比均相同时,HFTJV时的Paco_2,V_T及FRC较高频喷射通气(HFJV)时均显著降低(P<0.05),Vco_2及pH均显著升高(P<0.01),而Pao_2和气道压则无明显改变。当HFTJV的反喷驱动压从2.06,4.31增加到6.57kPa/kg时,Paco_2,Vco_2,Pao_2,V_T及FRC等均无明显改变。无论在HFJV或HFTJV时,当通气频率从60,100增加到200次/min时,Paco_2均随之升高,并与V_T呈显著负相关。结果提示,HFTJV较HFJV具有更强的CO_2排除作用,HFTJV时的CO_2排除主要受潮气量的影响。  相似文献   

3.
It has been suggested that the increase in inspiratory flow rate caused by a decrease in the inspiratory-to-expiratory time ratio (I:E) at a constant tidal volume (VT) could increase the efficiency of ventilation in high-frequency ventilation (HFV). To test this hypothesis, we studied the effect of changing I:E from 1:1 to 1:4 on steady-state alveolar ventilation (VA) at a given VT and frequency (f) and at a constant mean lung volume (VL). In nine anesthetized, paralyzed, supine dogs, HFV was performed at 3, 6, and 9 Hz with a ventilator that delivered constant inspiratory and expiratory flow rates. Mean airway pressure was adjusted so that VL was maintained at a level equivalent to that of resting FRC. At each f and one of the I:E chosen at random, VT was adjusted to obtain a eucapnic steady state [arterial pressure of CO2 (PaCO2) = 37 +/- 3 Torr]. After 10 min of each HFV, PaCO2, arterial pressure of O2 (PaO2), and CO2 production (VCO2) were measured, and I:E was changed before repeating the run with the same f and VT. VA was calculated from the ratio of VCO2 and PaCO2. We found that the change of I:E from 1:1 to 1:4 had no significant effects on PaCO2, PaO2, and VA at any of the frequencies studied. We conclude, therefore, that the mechanism or mechanisms responsible for gas transport during HFV must be insensitive to the changes in inspiratory and expiratory flow rates over the VT-f range covered in our experiments.  相似文献   

4.
用相关和回归处理方法,研究了8条正常狗咽喉部高频喷射通气时,调节驱动压、呼吸比和频率对喷气量、吸入气氧浓度、动脉血气及气道内压的作用。结果显示,驱动压和呼吸此对各观察指标几乎有同等重要的作用,频率的影响很小,喷气量与吸入气氧浓度、动脉血气、气道内压间存在显著的正相关关系。说明调节参数的意义主要在于改变了喷气量。  相似文献   

5.
The effects of changing tidal volume (VT) and frequency (f) on the distribution of ventilation during high-frequency ventilation (HFV) were assessed from the washout of nitrogen-13 by positron emission tomography. Six dogs, anesthetized and paralyzed, were studied in the supine position during conventional ventilation (CV) and during HFV at f of 3, 6, and 9 Hz. In CV and HFV at 6 Hz, VT was selected to achieve eucapnic arterial partial pressure of CO2 (37 +/- 3 Torr). At 3 and 9 Hz, VT was proportionally changed so that the product of VT and f remained constant and equal to that at 6 Hz. Mean residence time (MRT) of nitrogen-13 during washout was calculated for apical, midheart, and basal transverse sections of the lung and further analyzed for gravity-dependent, cephalocaudal and radial gradients. An index of local alveolar ventilation per unit of lung volume, or specific ventilation (spV), was calculated as the reciprocal of MRT. During CV vertical gradients of regional spV were seen in all sections with ventral (nondependent) regions less ventilated than dorsal (dependent) regions. Regional nonuniformity in gas transport was greatest for HFV at 3 and 6 Hz and lowest at 9 Hz and during CV. During HFV, a central region at the base of the lungs was preferentially ventilated, resulting in a regional time-averaged tracer concentration equivalent to that of the main bronchi. Because the main bronchi were certainly receiving fresh gas, the presence of this preferentially ventilated area, whose ventilation increased with VT, strongly supports the hypothesis that direct convection of fresh gas is an important mechanism of gas transport during eucapnic HFV. Aside from the local effect of increasing overall lung ventilation, this central area probably served as an intermediate shuttle station for the transport of gas between mouth and deeper alveoli when VT was less than the anatomic dead space.  相似文献   

6.
The effects of body position and respiratory frequency (f) on regional gas transport during eucapnic conventional ventilation (CV) and high-frequency ventilation (HFV) were assessed from the washout of nitrogen 13 (13NN) using positron-emission tomography. In one protocol, six dogs were ventilated with CV or HFV at f = 6 Hz and tidal volume (VT) selected supine for eucapnia. A coronal cross section of the lung base was studied in the supine, prone, and right and left lateral decubitus positions. In a second protocol, six dogs were studied prone: apical and basal cross sections were studied in CV and in HFV with f = 3 and 9 Hz at eucapnic VT. Regional alveolar ventilation per unit of lung volume (spVr) was calculated for selected regions and analyzed for gravity-dependent cephalocaudal and right-to-left gradients. In both CV and HFV, nonuniformity in spVr was highest supine and lowest prone. In CV there were vertical gradients of spVr in all body positions: nondependent less ventilated than dependent regions, particularly in the supine position. In HFV there was a moderate vertical gradient in spVr in addition to a preferentially ventilated central region in all body positions. Overall lung spV was unaffected by body position in CV but in HFV was highest supine and lowest prone. Nonuniformity in eucapnic prone HFV was unaffected by f and always higher than in CV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In dogs, respiratory system resistance (Rrs) is frequency independent, and during high-frequency oscillatory ventilation (HFO) the relationship between CO2 elimination (VCO2) and frequency is linear. In contrast, we found in rabbits a large frequency-dependent decrease in Rrs with increasing frequency along with a nonlinear relationship between frequency and VCO2 (J. Appl. Physiol. 57: 354-359, 1984). We proposed that frequency dependent mechanical properties of the lung account for inter-species differences in the frequency dependence of gas exchange during HFO. In the current study we tested this hypothesis further by measuring VCO2 and Rrs as a function of frequency in a species of monkey (Macaca radiata). In these monkeys, Rrs decreased minimally between 4 and 8 Hz and in general increased at higher frequencies, whereas VCO2 was linearly related to frequency. This is further evidence supporting the hypothesis that nonlinear frequency-VCO2 behavior during HFO is related to frequency-dependent behavior in Rrs.  相似文献   

8.
To investigate the effect of high-frequency oscillatory ventilation (HFOV) on the pulmonary epithelial permeability, we measured the clearance rate of nebulized sodium pertechnetate (99mTcO4-) and diethylenetriaminepentaacetate (99mTc-DTPA) before and after a 4-h period of mechanical ventilation in anesthetized mongrel dogs. The animals also underwent experiments with 4 h of spontaneous breathing (SB) and intermittent positive-pressure ventilation (IPPV) with and without addition of positive end-expiratory pressure (PEEP) for comparison. After IPPV and SB there was no change in the clearance rate of either 99mTcO4- or 99mTc-DTPA. After IPPV + PEEP and HPOV (8 and 16 Hz), there was an increase in the clearance rate of 99mTc-DTPA, but an increase in clearance rate of 99mTcO4- was seen after IPPV + PEEP only. In a separate group of dogs an increase in end-tidal lung volume was demonstrated after 4 h of ventilation with IPPV + PEEP (but not after HFOV), and this may account for the measured increase in 99mTcO4- clearance. We conclude that an increase in 99mTc-DTPA clearance rate after HFOV signifies an increase in pulmonary epithelial permeability, possibly through the mechanism of damage to the intercellular junctions during HFOV.  相似文献   

9.
We studied the effects of synchronous cardiac cycle-specific high-frequency jet ventilation (HFJV) in pentobarbital-anesthetized, splenectomized, closed-chest dogs to test the hypothesis that phasic inspiratory increases in intrathoracic pressure (ITP) selectively timed to specific periods of the cardiac cycle have different hemodynamic effects during both hypovolemia (acute hemorrhage, 20 ml/kg) and neurogenic vasomotor shock (hexamethonium, 10 mg/kg) than those observed during normovolemic control conditions. Ventricular stroke volumes (SV) were measured by electromagnetic flow probes. The influence of changes in venous return (VR) on the subsequent hemodynamic response to synchronous HFJV was analyzed using instantaneous VR curves (M. R. Pinsky, J. Appl. Physiol. 56:765-771, 1984). During hemorrhage the VR curve was shifted leftward with concomitant reductions in apneic SV (15.4 +/- 3.8 to 11.2 +/- 3.6 ml, mean +/- SD), (P less than 0.01) that were accentuated by HFJV (P less than 0.01), except when the phasic inspiratory increases in ITP during HFJV were timed to occur during late diastole (-4% apneic SV, NS). SV was greater with late diastolic pulses than with other timed synchronous ITP pulses during hypovolemia (P less than 0.01). During ganglionic blockade, arterial pressure decreased (139 +/- 14 to 76 +/- 18 Torr, P less than 0.001), but VR was preserved at control levels, and no significant cardiac cycle-specific HFJV effects occurred. We conclude that SV reductions associated with positive-pressure ventilation during acute hypovolemia are minimized by HFJV synchronized to late diastole but that this effect is preload dependent.  相似文献   

10.
The major goal of this study was to compare gas exchange, tidal volume (VT), and dynamic lung pressures resulting from high-frequency airway oscillation (HFAO) with the corresponding effects in high-frequency chest wall oscillation (HFCWO). Eight anesthetized paralyzed dogs were maintained eucapnic with HFAO and HFCWO at frequencies ranging from 1 to 16 Hz in the former and 0.5 to 8 Hz in the latter. Tracheal (delta Ptr) and esophageal (delta Pes) pressure swings, VT, and arterial blood gases were measured in addition to respiratory impedance and static pressure-volume curves. Mean positive pressure (25-30 cmH2O) in the chest cuff associated with HFCWO generation decreased lung volume by approximately 200 ml and increased pulmonary impedance significantly. Aside from this decrease in functional residual capacity (FRC), no change in lung volume occurred as a result of dynamic factors during the course of HFCWO application. With HFAO, a small degree of hyperinflation occurred only at 16 Hz. Arterial PO2 decreased by 5 Torr on average during HFCWO. VT decreased with increasing frequency in both cases, but VT during HFCWO was smaller over the range of frequencies compared with HFAO. delta Pes and delta Ptr between 1 and 8 Hz were lower than the corresponding pressure swings obtained with conventional mechanical ventilation (CMV) applied at 0.25 Hz. delta Pes was minimized at 1 Hz during HFCWO; however, delta Ptr decreased continuously with decreasing frequency and, below 2 Hz, became progressively smaller than the corresponding values obtained with HFAO and CMV.  相似文献   

11.
In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation [inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1] were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but the alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.  相似文献   

12.
Garter snakes increase ventilation in response to elevated venous PCO2 without a concomitant rise in arterial PCO2 (Furilla et al. Respir. Physiol. 83: 47-60, 1991). Elevating venous PCO2 will increase the PCO2 gradient between pulmonary arterial blood and intrapulmonary gas during inspiration, leading to a greater rate of rise of intrapulmonary CO2 after inspiration. Because the lung contains CO2-sensitive receptors, I assessed the effect of the rate of rise of intrapulmonary CO2 on ventilation in unidirectionally ventilated snakes. CO2 concentration was altered using a digital gas mixer connected to a personal computer. Breathing frequency was highly correlated with the rate of rise intrapulmonary CO2 but only slightly affected by peak intrapulmonary CO2. On the other hand, tidal volume was more closely related to peak intrapulmonary CO2 than to the rate of rise of CO2. Bilateral pulmonary or cervical vagotomy nearly eliminated the ventilatory response associated with altered CO2 rise times but had little influence on the tidal volume response to the rate of rise of CO2. The mechanism whereby breathing frequency is controlled by the rate of rise of intrapulmonary CO2 is likely to originate with intrapulmonary chemoreceptors and may be important in the control of breathing during exercise.  相似文献   

13.
High-frequency external body vibration, combined with constant gas flow at the tracheal carina, was previously shown to be an effective method of ventilation in normal dogs. The effects of frequency (f) and amplitude of the vibration were investigated in the present study. Eleven anesthetized and paralyzed dogs were placed on a vibrating table (4-32 Hz). O2 was delivered near the tracheal carina at 0.51.kg-1.min-1, while mean airway pressure was kept at 2.4 +/- 0.9 cmH2O. Table vertical displacement (D) and acceleration (a), esophageal (Pes), and tracheal (Ptr) peak-to-peak pressures, and tidal volume (VT) were measured as estimates of the input amplitude applied to the animal. Steady-state arterial PCO2 (PaCO2) and arterial PO2 (PaO2) values were used to monitor overall gas exchange. Typically, eucapnia was achieved with f greater than 16 Hz, D = 1 mm, a = 1 G, Pes = Ptr = 4 +/- 2 cmH2O, and VT less than 2 ml. Inverse exponential relationships were found between PaCO2 and f, a, Pes, and Ptr (exponents: -0.69, -0.38, -0.48, and -0.54, respectively); PaCO2 decreased linearly with increased displacement or VT at a fixed frequency (17 +/- 1 Hz). PaO2 was independent of both f and D (393 +/- 78 Torr, mean +/- SD). These data demonstrate the very small VT, Ptr, and Pes associated with vibration ventilation. It is clear, however, that mechanisms other then those described for conventional ventilation and high-frequency ventilation must be evoked to explain our data. One such possible mechanism is forcing of flow oscillation between lung regions (i.e., forced pendelluft).  相似文献   

14.
The goal of this theoretical study was to develop a simple computational model for determining the lung pressure excursions that accompany the maintenance of adequate gas transport through high-frequency airway oscillations applied via the trachea (HFAO) and by transthoracic means (HFTO). Respiratory mechanics and gas transport parameters estimated from the preceding companion study (J. Appl. Physiol. 67: 985-992, 1989) were used in the model for computing tracheal, alveolar, pleural, and transpulmonary pressure swings. Comparison of model predictions with corresponding data obtained in dogs showed close agreement. The specification of eucapnia as a constraint led to results that were significantly different from previous findings which had assumed constant airflow. We used the model to identify "quasi-optimal" strategies for HFAO and HFTO application in which all pressure excursions were kept below the corresponding levels produced by conventional mechanical ventilation operating at 15 breaths/min. The model suggests the application of both HFAO and HFTO at frequencies substantially lower than the settings commonly employed in high-frequency ventilation. Application of HFAO at frequencies ranging from 1 to 4 Hz is recommended, whereas for HFTO the quasi-optimal range lies between 1 and 1.7 Hz. In patients with chronic obstructive pulmonary disease, pressure costs during HFAO or HFTO are minimized in the vicinity of 1 Hz.  相似文献   

15.
In supracollicular decerebrate paralyzed adult rats, neural respiration was monitored by bilateral phrenic recordings. In the study of respiratory cycle timing, the effects of vagal afferent input (lung inflation) on respiratory phase durations resembled those seen in decerebrate cats. 1) Withholding lung inflation during neural inspiration (I) produced lengthening of I phase duration by 46% (mean, n = 11). 2) Maintaining lung inflation during neural expiration (E) produced lengthening of E phase duration by 112% (mean, n = 4). In the study of fast rhythms in inspiratory discharges, phrenic nerve autospectra and bilateral (left-right) phrenic coherences in 16 rats revealed two types of fast rhythm: 1) high-frequency oscillation (HFO), which had significant coherence peaks (n = 9, range 106-160 Hz, mean 132 Hz); and 2) medium-frequency oscillation (MFO), which had autospectral peaks but no distinct coherence peaks (n = 11, range 46-96 Hz, mean 66 Hz). These rhythms resembled MFOs and HFOs in the decerebrate cat, but the modal frequency range was about twice as large. In addition, these frequency values differed markedly from the 20-40 Hz of the rhythms found in earlier studies in neonatal in vitro preparations; the difference may be due to developmental immaturity.  相似文献   

16.
We assessed pulmonary mechanics in six open-chest rabbits (3 young and 3 adult) by the forced oscillation technique between 0.16 and 10.64 Hz. Under control conditions, pulmonary resistance (RL) decreased markedly between 0.16 and 4 Hz, after which it became reasonably constant. Measurements of alveolar pressure from two alveolar capsules in each rabbit showed that the large decrease of RL with increasing frequency below 4 Hz was due to lung tissue rheology and that tissue resistance was close to zero above 4 Hz. Estimates of resistance and elastance, also obtained by fitting tidal ventilation data at 1 Hz to the equation of the linear single-compartment model, gave values for RL motion that were slightly higher than those obtained by forced oscillations at the same frequency, presumably because of the flow dependence of airways resistance. After treatment with increasing doses of aerosolized methacholine, RL and pulmonary elastance between 0.16 and 1.34 Hz progressively increased, as did the point at which the pulmonary reactance crossed zero (the resonant frequency). The alveolar pressure measurements showed the lung to become increasingly inhomogeneously ventilated in all six animals, whereas in the three younger rabbits lobar atelectasis developed at high methacholine concentrations and the alveolar capsules ceased to communicate with the central airways. We conclude that the low-frequency pulmonary impedance of rabbits exhibits the same qualitative features observed in other species and that it is a sensitive indicator of the changes in pulmonary mechanics occurring during bronchoconstriction.  相似文献   

17.
Fifteen anesthetized mechanically ventilated patients recovering from multiple trauma were studied to compare the effects of high-frequency jet ventilation (HFJV) and continuous positive-pressure ventilation (CPPV) on arterial baroreflex regulation of heart rate. Systolic arterial pressure and right atrial pressure were measured using indwelling catheters. Electrocardiogram (ECG) and mean airway pressure were continuously monitored. Lung volumes were measured using two linear differential transformers mounted on thoracic and abdominal belts. Baroreflex testing was performed by sequential intravenous bolus injections of phenylephrine (200 micrograms) and nitroglycerin (200 micrograms) to raise or lower systolic arterial pressure by 20-30 Torr. Baroreflex regulation of heart rate was expressed as the slope of the regression line between R-R interval of the ECG and systolic arterial pressure. In each mode of ventilation the ventilatory settings were chosen to control mean airway pressure and arterial PCO2 (PaCO2). In HFJV a tidal volume of 159 +/- 61 ml was administered at a frequency of 320 +/- 104 breaths/min, whereas in CPPV a tidal volume of 702 +/- 201 ml was administered at a frequency of 13 +/- 2 breaths/min. Control values of systolic arterial pressure, R-R interval, mean pulmonary volume above apneic functional residual capacity, end-expiratory pulmonary volume, right atrial pressure, mean airway pressure, PaCO2, pH, PaO2, and temperature before injection of phenylephrine or nitroglycerin were comparable in HFJV and CPPV. Baroreflex regulation of heart rate after nitroglycerin injection was significantly higher in HFJV (4.1 +/- 2.8 ms/Torr) than in CPPV (1.96 +/- 1.23 ms/Torr).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
During high-frequency small-volume ventilation (HFV), the transport rate of gas from the mouth to a lung region is a function of two conductances (conductance is the transfer rate of a gas divided by its partial pressure difference): regional longitudinal gas conductance along the airways (Grlongi) and gas conductance between lung regions (Ginter). Grlongi per unit regional lung (gas) volume [Grlongi/(Vr beta g)] was determined during HFV in 11 anesthetized paralyzed dogs lying supine. The distribution of Grlongi/(Vr beta g) was nearly uniform during HFV when stroke volumes were less than approximately two-thirds of the Fowler dead-space volume. By contrast, the distribution of Grlongi/(Vr beta g) was nonuniform when the stroke volume exceeded approximately two-thirds of the Fowler dead-space volume and the oscillation frequency was 5 Hz. Gas conductance along the airways per unit lung gas volume [average Glongi/(V beta g)], for the entire lung, increased with stroke volume at all frequencies, but for a given product of oscillation frequency and stroke volume, the average Glongi/(V beta g) was greater when stroke volume was large and oscillation frequency was low. The average Glongi/(V beta g) increased with frequency up to a maximal value; the frequency at which the maximum occurred depended on the kinematic viscosity of the inspired gas mixture.  相似文献   

19.
In eight anesthetized and tracheotomized rabbits, we studied the transfer impedances of the respiratory system during normocapnic ventilation by high-frequency body-surface oscillation from 3 to 15 Hz. The total respiratory impedance was partitioned into pulmonary and chest wall impedances to characterize the oscillatory mechanical properties of each component. The pulmonary and chest wall resistances were not frequency dependent in the 3- to 15-Hz range. The mean pulmonary resistance was 13.8 +/- 3.2 (SD) cmH2O.l-1.s, although the mean chest wall resistance was 8.6 +/- 2.0 cmH2O.l-1.s. The pulmonary elastance and inertance were 0.247 +/- 0.095 cmH2O/ml and 0.103 +/- 0.033 cmH2O.l-1.s2, respectively. The chest wall elastance and inertance were 0.533 +/- 0.136 cmH2O/ml and 0.041 +/- 0.063 cmH2O.l-1.s2, respectively. With a linear mechanical behavior, the transpulmonary pressure oscillations required to ventilate these tracheotomized animals were at their minimal value at 3 Hz. As the ventilatory frequency was increased beyond 6-9 Hz, both the minute ventilation necessary to maintain normocapnia and the pulmonary impedance increased. These data suggest that ventilation by body-surface oscillation is better suited for relatively moderate frequencies in rabbits with normal lungs.  相似文献   

20.
The present study was undertaken to evaluate the extent that the lung inflation reflex attenuates vasoconstrictor responses in renal cortex and splanchnic beds during severe arterial hypoxia. Hypoxia was induced by inspiration of a 3-5% oxygen gas mixture in three groups of chloralose-anesthetized dogs: Group I, free breathing; Group II, controlled ventilation; Group III, free breathing with arterial PCO2 held constant. Regional vascular conductances (VC) were calculated from regional blood flows measured with 15-microns radioactive microspheres. In Group I, hypoxia caused marked hyperventilation, which was accompanied by no significant change in VC in renal cortex, and by reductions in VC in spleen (-36%), pancreas (-56%), and duodenum (-28%). In Group II, hypoxia caused reduction in VC in renal cortex (-70%), and reductions in VC in spleen, pancreas, and duodenum similar to those in Group I. In Group III, hypoxia again caused marked hyperventilation, but reductions in VC in renal cortex, spleen, pancreas, and duodenum were similar to those in Group II. Results indicate that during severe arterial hypoxia activation of lung inflation reflex does not attenuate or reverse vasoconstriction in renal cortex, spleen, pancreas, and duodenum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号