首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In primate species the m. psoas major, the only muscle simultaneously controlling the spinal column and lower extremity, is expected to reflect morpho-functional adaptation to diversified locomotor behavior. By using histochemical analysis with Sudan black B staining, composition of different types of muscle fibers in the psoas major was compared between 2 Japanese macaques, 2 hamadryas baboons, 2 anubis baboons, 2 orangutans, and 17 humans. The comparison has revealed unique features of this muscle in humans: 1) Type 1 or red fibers are thicker than Type 2 or white fibers in humans but vice versa in nonhumans; 2) among the species examined the number of the muscle fibers per unit cross-sectional area is largest, implying the fibers are thinnest, in humans; 3) frequency of Type 1 fibers is highest in humans, intermediate in monkeys, and lowest in the orangutan, whereas Type 2 fibers show an inverse trend among the species. These results suggest a correspondence in primates between the composition of the psoas major muscle fibers and difference in substrates inhabited as well as in their positional behaviors.  相似文献   

2.
1. Ampullary electroreceptors in elasmobranchs are innervated by fibers of the ALLN, which projects to the dorsal octavolateralis nucleus (DON). The purpose of this study is to examine the response characteristics of ALLN fibers and DON neurons to weak D.C. and sinusoidal electric field stimuli presented as local dipole fields. 2. ALLN fibers respond to presentation of D.C. fields with a phasic burst, followed by a more slowly adapting period of firing. Ascending efferent neurons (AENs) in the DON respond to stimuli with a similar initial burst, which adapts more quickly. 3. Type 1, 2, and 3 neurons are possible local interneurons or commissural DON neurons. Type 1 neurons demonstrate response properties similar to those of AENs. Type 2 cells demonstrated slowly adapting responses to excitatory stimuli, the duration of the response increased with the amplitude of the stimulus. Type 3 neurons demonstrated an increased rate of firing, but the response lacked any specific temporal characteristics. 4. ALLN fibers typically have receptive fields consisting of a single ampulla. The receptive field sizes of DON neurons exhibited varying degrees of convergence for different cell types. 5. Responses of ALLN fibers and DON neurons to weak sinusoidal stimuli demonstrated very similar frequency response characteristics for all cell types. The peak sensitivity of electrosensory neurons was between 5-10 Hz.  相似文献   

3.
The ultrastructure of the femoral extensors of the metathoracic leg of the cockroach, Periplaneta americana was studied to determine morphological correlations with the known patterns of innervation, physiological properties and biochemical properties. Three different types of muscle fibers were described. Type 1 consisted of short sarcomeres (mean 3.7 μm), few mitochondria and sparse glycogen-like material; Type 2, short sarcomeres (4.2 μm), numerous mitochondria, large amounts of glycogen; Type 3, long sarcomeres (7.5 μm), numerous mitochondria and large amounts of glycogen. A qualitative examination of the sarcoplasmic reticulum (SR) and transverse tubular system (TTS) revealed the density of SR and TTS to be greatest in Type 1 and least in Type 3. There were obvious correlations between the morphological features and the other known characteristics of these muscle fibers. The role of these different muscle fiber types in different locomotory behaviors was discussed. In summary, the three types of muscle fibers are used in three different behaviors: Type 1, rapid walking; Type 2, slow walking; Type 3, postural control.  相似文献   

4.
Summary The histochemical pattern of muscle fiber types of the longissimus dorsi and biceps femoris muscles was investigated in normal and splaylegged piglets at birth and seven days later. Only slight differences between the muscle fibers at birth were found using histochemical reactions for alkaline adenosine triphosphatase (ATPase), succinate dehydrogenase (SDH), phosphorylase (PH) activities, and for the periodic acid-Schiff (PAS) reaction. With the method for acid-preincubated ATPase activity, high activity was observed in Type I muscle fibers and low activity in Type II muscle fibers in animals of both groups investigated. However, a higher number of Type I fibers was found in muscles of normal piglets, suggesting a faster and more advanced process of transformation of Type II into Type I muscle fibers in unaffected animals. Thus the histochemical conversion appears to be retarded in muscles of splaylegged animals, which have a histochemical pattern similar to that of normal prenatal animals. Cholinesterase activity in motor endplates was well developed; its staining revealed smaller sized and irregularly arranged endplates in muscles of affected piglets. Fiber type differentiation in muscles of animals which recovered from splayleg becomes fully developed and comparable to normal piglets seven days after birth. The number of fibers which became converted from Type II to Type I was increased; the fiber types were differentiated with regard to the PAS reaction and to their ATPase, SDH and PH activities. Morphological features of motor endplates in muscles of normal and surviving splaylegged piglets are similar.Histochemical investigation of the fiber type differentiation thus suggests that full recovery occurs within the first week of postnatal life in muscles affected by pathological changes accompanying splayleg.  相似文献   

5.
The histochemical pattern of muscle fiber types of the longissimus dorsi and biceps femoris muscles was investigated in normal and splaylegged piglets at birth and seven days later. Only slight differences between the muscle fibers at birth were found using histochemical reactions for alkaline adenosine triphosphatase (ATPase), succinate dehydrogenase (SDH), phosphorylase (PH) activities, and for the periodic acid-Schiff (PAS) reaction. With the method for acid-preincubated ATPase activity, high activity was observed in Type I muscle fibers and low activity in Type II muscle fibers in animals of both groups investigated. However, a higher number of Type I fibers was found in muscles of normal piglets, suggesting a faster and more advanced process of transformation of Type II into Type I muscle fibers in unaffected animals. Thus the histochemical conversion appears to be retarded in muscles of splaylegged animals, which have a histochemical pattern similar to that of normal prenatal animals. Cholinesterase activity in motor endplates was well developed; its staining revealed smaller sized and irregularly arranged endplates in muscles of affected piglets. Fiber type differentiation in muscles of animals which recovered from splayleg becomes fully developed and comparable to normal piglets seven days after birth. The number of fibers which became converted from Type II to Type I was increased; the fiber types were differentiated with regard to the PAS reaction and to their ATPase, SDH and PH activities. Morphological features of motor endplates in muscles of normal and surviving splaylegged piglets are similar. Histochemical investigation of the fiber type differentiation thus suggests that full recovery occurs within the first week of postnatal life in muscles affected by pathological changes accompanying splayleg.  相似文献   

6.
Myosin heavy chain (MHC) expression by intrafusal fibers was studied by immunocytochemistry to determine how closely it parallels MHC expression by extrafusal fibers in the soleus and tibialis anterior muscles of the rat. Among the MHC isoforms expressed in extrafusal fibers, only the slow-twitch MHC of Type 1 extrafusal fibers was expressed along much of the fibers. Monoclonal antibodies (MAb) specific for this MHC bound to the entire length of bag2 fibers and the extracapsular region of bag1 fibers. The fast-twitch MHC isoform strongly expressed by bag2 and chain fibers had an epitope not recognized by MAb to the MHC isoforms characteristic of developing muscle fibers or the three subtypes (2A, 2B, 2X) of Type 2 extrafusal fibers. Therefore, intrafusal fibers may express a fast-twitch MHC that is not expressed by extrafusal fibers. Unlike extrafusal fibers, all three intrafusal fiber types bound MAb generated against mammalian heart and chicken limb muscles. The similarity of the fast-twitch MHC of bag2 and chain fibers and the slow-tonic MHC of bag1 and bag2 fibers to the MHC isoforms expressed in avian extrafusal fibers suggests that phylogenetically primitive MHCs might persist in intrafusal fibers. Data are discussed relative to the origin and regional regulation of MHC isoforms in intrafusal and extrafusal fibers of rat hindlimb muscles.  相似文献   

7.
The neurohypophysial lobe is a thin-walled sac that, except for a few blood vessels, lacks any anatomical link with the adenohypophysis. Its wall consists of ependymal, fiber and palisade zones and is surrounded by blood vessels. The lobe is differentiated into distinct dorsal and ventral regions. The dorsal wall is doubly innervated by Gomori-positive axons arising in the anterior hypothalamus and by Gomori-negative fibers of unknown origin. Its surface is covered by an extensive vascular plexus. The ventral wall is innervated only by Gomori-negative fibers and is sparsely supplied with a few fine capillaries. All of the ependymal cells in both regions have the same ultrastructural appearance. The Gomori-positive or Type I axons are identified at the electron microscope level as fibers containing elementary granules with a diameter of 150–230 run. The Gomori-negative or Type II fibers contain dense-cored vesicles that vary from 80–125 nm in diameter. Both Type I and II fibers form synaptic-like complexes with the processes and end-feet of the ependymal cells. Type I axons also abut on the basal lamina bounding the perivascular spaces. It is suggested that the agranular reticulum of the ependymal cells may provide a transport pathway for neural products that are destined for release into the circulation. It is also possible that the ependyma itself is a target of neural activity.  相似文献   

8.
We evaluated the distribution of Type III collagen, Type VI collagen, and fibrillin in human bone, using monoclonal antibodies (MAb) of proven specificity. All three molecules are present in developing and remodeling bone. Type III collagen is present in discrete fiber bundles throughout the bone cortex but is concentrated at the Haversian canal surface and in the fibers at the bone-periosteal interface. The collagen fibrils in these bundles are of uniform diameter. Type III-containing collagen fibers are detected at all ages examined, from 30 fetal weeks to 80 years. Type VI collagen is present in fetal bone in discrete fibrils separate from Type III collagen, and becomes restricted to the margins of bone cells and the bone surface by 7 years. The distribution of fibrillin resembles that of Type III collagen in the fetus, but at 7 years is absent from the interior of the cortex except for the canaliculi and cement lines, and remains concentrated in discrete fibers at the bone surface.  相似文献   

9.
The expression of the Na(+),K(+)-ATPase alpha and beta subunit isoforms in rat skeletal muscle and its age-associated changes have been shown to be muscle-type dependent. The cellular basis underlying these findings is not completely understood. In this study, we examined the expression of Na(+),K(+)-ATPase isoforms in individual fiber types and tested the hypothesis that, with age, the changes in the expression of the isoforms differ among individual fibers. We utilized immunohistochemical techniques to examine the expression of the subunit isoforms at the individual fiber levels. Immunofluorescence staining of the subunit isoforms in both white gastrocnemius (GW) and red gastrocnemius (GR) revealed a predominance of staining on the sarcolemmal membrane. Compared to the skeletal muscle of 6-month-old rats, there were substantial increases in the levels of alpha1, beta1, and beta3 subunit isoforms, and decreases in the levels of alpha2 and beta2 in 30-month-old rats. In addition, we found distinct patterns of staining for the alpha1, alpha2, beta1, and beta2 isoforms in tissue sections from young and aged rats. Muscle fiber-typing was performed to correlate the pattern of staining with specific fiber types. Staining for alpha1 and alpha2 isoforms in the skeletal muscle of young rats was generally evenly distributed among the fibers of GW and GR, with the exception of higher alpha1 levels in slow-twitch oxidative Type I fibers of GR. By contrast, staining for the beta1 and beta2 isoforms in the mostly oxidative fibers and the mostly glycolytic fibers, respectively, was almost mutually exclusive. With age, there was a fiber-type selective qualitative decrease of alpha2 and beta2 in Type IIB fibers, and increase of beta1 in Type IIB fibers and beta2 in Type IID fibers of white gastrocnemius. These results provide, at the individual fiber level, a cellular basis for the differential expression of the Na(+),K(+)-ATPase subunit isoforms in the muscle groups. The data further indicate that the aged-associated changes in expression of the subunit isoforms occur in both a fiber-type specific as well as an across fiber-type manner. Because of the differing biochemical properties of the subunit isoforms, these changes add another layer of complexity in our understanding of the adaptation of the Na-pump in skeletal muscle with advancing age.  相似文献   

10.
Distribution of fiber types in locomotory muscles of dogs   总被引:3,自引:0,他引:3  
The distribution of Type I and Type II fibers, as determined from histochemical estimation of myofibrillar ATPase activity, was studied within and among the locomotory muscles of the forelimb, trunk, and hindlimb of three mongrel dogs. All Type II fibers had high oxidative capacities as estimated from the histochemical assay for reduced nicotinamide adenine dinucleotide tetrazolium reductase, so they were not further divided into subpopulations. Furthermore, Type I and Type II fibers had similar oxidative potentials as indicated by both histochemistry and biochemistry. Type I fiber populations ranged between 14% and 100% in the muscles sampled. The highest percentages of Type I fibers were found in deep muscles of physiological extensor groups in the arm and thigh that serve to resist gravity (antigravity muscles) when the dog is in the quadrupedal standing position. More superficial muscles in these same groups had fewer Type I fibers. The patterns of Type I fiber distribution among muscles in the antigravity groups of the forearm and leg were the opposite of those in the arm and thigh, with the more superficial muscles of the distal limb segments having more Type I fibers than the deeper muscles. In all limb segments, muscle groups that do not serve to resist gravity did not show as much intermuscular variation. Type I fiber populations in these muscles did not exceed 50%. A stratification of fiber types also existed within muscles, both in extensor and flexor groups, with the deeper portions of the muscles having more Type I fibers than the more superficial portions.  相似文献   

11.
The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.  相似文献   

12.
Thyroidectomy has a dramatic effect on rat muscle, greatly increasing the number of Type I fibers and the concentrations of carbonic anhydrase III (CAIII) in the muscle. Carbonic anhydrase III is not confined to the Type I fibers, as was previously believed, but also occurs in fibers that exhibit a level of ATPase staining less than that of 2A fibers but greater than 2B. These fibers are rare in normal muscle but become numerous after thyroidectomy, when they stain heavily for CAIII.  相似文献   

13.
Receptive fields and responsiveness of single fibers of the glossopharyngeal (IXth) nerve were investigated using electrical, gustatory (NaCl, quinine HCl, acetic acid, water, sucrose, and CaCl2), thermal, and mechanical stimulation of the single fungiform papillae distributed on the dorsal tongue surface in frogs. 172 single fibers were isolated. 58% of these fibers (99/172) were responsive to at least one of the gustatory stimuli (taste fibers), and the remaining 42% (73/172) were responsive only to touch (touch fibers). The number of papillae innervated by a single fiber (receptive field) was between 1 and 17 for taste fibers and between 1 and 10 for touch fibers. The mean receptive field of taste fibers (X = 6.6, n = 99) was significantly larger than that of touch fibers (X = 3.6, n = 73) (two-tailed t test, P less than 0.001). In experiments with natural stimulation of single fungiform papillae, it was found that every branch of a single fiber has a similar responsiveness. Taste fibers were classified into 14 types (Type N, Q, A, NA, NCa, NCaA, NCaW, NCaAW, NCaWS, NQ, NQA, NQAS, NQWarm, Multiple) on the basis of their responses to gustatory and thermal stimuli. The time course of the response in taste fibers was found to be characteristic of their types. For example, the fibers belonging to Type NQA showed phasic responses, those in Type NCa showed tonic responses, etc. These results indicate that there are several groups of fibers in the frog IXth nerve and that every branch of an individual fiber has a similar responsiveness to the parent fiber.  相似文献   

14.
Lee JS  Lee YG  Park JJ  Shin YK 《Tissue & cell》2012,44(5):316-324
In this study, the morphology and ultrastructure of the foot of Tegillarca granosa was compared with the bivalves from different habitats. The sediment of habitat of T. granosa is mostly a mixture of sand (68.93%) and mud (24.12%). The foot is wedge-shaped with multiple projections on the surface and covered with ciliary tufts. The epithelial layer is simple and composed of ciliated columnar epithelia and mucous cells. Although the mucous cells are distributed mostly in the epithelial layer, they are developed even in the connective tissues and muscle layers, and the mucous cells mostly contain acidic carboxylated mucosubstances. From the TEM observation, secretory cells are classified into three types. Type A secretory cell has a goblet form and is most widely distributed among the three types. Type B secretory cell has an oval form and the secretory granule has fibrous substance. Type C secretory cell has an elongated elliptic form and membrane-bounded secretory granules. The muscle fiber bundles are composed mainly of smooth muscle fibers. The smooth muscle fibers can be divided into two types. Type A muscle fibers have evenly distributed thick microfilaments between the thin microfilaments of cytoplasm. Type B muscle fiber has cluster of condensed microfilaments in the medulla cytoplasm while the cortical cytoplasm has loose distribution of thin microfilaments.  相似文献   

15.
A muscle biopsy from the vastus lateralis muscle of a strength-trained woman was found to contain an unusual fiber type composition and was analyzed by histochemical, biochemical, and ultrastructural techniques. Special attention was given to the C-fibers, which comprised over 15% of the total fiber number in the biopsy. The mATPase activity of the C-fibers remained stable to varying degrees over the pH range normally used for routine mATPase histochemistry. Although a continuum existed, the C-fibers were histochemically subdivided into three main fiber types: IC, IIC, and IIAC. The IC fibers were histochemically more similar to the Type I, the IIAC were more similar to the Type IIA, and the IIC were darkly stained throughout the pH range. Biochemical analysis revealed that all C-fibers coexpressed myosin heavy chains (MHC) I and IIa in variable ratios. The histochemical staining intensity correlated with the myosin heavy chain composition such that the Type IC fibers contained a greater ratio of MHCI/MHCIIa, the IIAC contained a greater ratio of MHCIIa/MHCI, and the Type IIC contained equal amounts of these two heavy chains. Ultrastructural data of the C-fiber population revealed an oxidative capacity between fiber Types I and IIA and suggested a range of mitochondrial volume percent from highest to lowest such that I greater than IC greater than IIC greater than IIA-C greater than IIA. Under physiological conditions, it appears that the IC fibers represent Type I fibers that additionally express some fast characteristics, whereas the Type IIAC are Type IIA fibers that additionally express some slow characteristics. Fibers expressing a 50:50 mixture of MHCI and MHCIIa (IIC fibers) were rarely found. It is not known whether C-fibers represent a distinct population between the fast- and slow-twitch fibers that is specifically adapted to a particular usage or whether they are transforming fibers in the process of going from fast to slow or slow to fast.  相似文献   

16.
The morphology and function of tendinous connections between the bases of the first and second metacarpal bone was studied in dissected specimens. The sample comprises 28 hands from eight species of cercopithecidae and pongidae and 23 human hands. Four types were identified: (1) No intermetacarpal connections were present. (2) The extensor carpi radialis longus tendon was divided at the carpus and the side branch inserted on the ulnar side of the base of the first metacarpal bone. (3) Part of the fibers of the extensor carpi radialis longus bypassed the insertion on the second metacarpal bone and continued to the base of the first metacarpal bone. A few proper intermetacarpal fibers were included. (4) An extracapsular, intermetacarpal ligament was present. Its fibers were mainly separated from the extensor carpi radialis longus. Type 1 is a general mammalian form. Type 2 is common in higher, non-human primates. Type 3 was found in 2 of the 23 human hands and otherwise among the anthropoid apes only. Type 4 is apomorph in man. Individual variations exist though. Type 3 and especially type 4 could check ab- and adductions and guide a circumduction in the first carpometacarpal joint.  相似文献   

17.
In the present investigation the right intracranial portion of the trochlear nerves and dorsal oblique muscle of the right ocular globe were removed from six adult dogs and analyzed by light and electron microscopy. Unmyelinated fibers were observed in the analyzed nerves. The number, diameter, area, and density of myelinated fibers were determined, as were corresponding axon area and diameter and myelin sheath thickness. Frequency histograms of myelin sheath thickness and fiber size show a bimodal distribution with a similar proportion of large and small fibers. Muscle samples were taken from the central portion of the muscle belly, subsequently frozen, cut, and stained with m-ATPase at pH 4.6. Fibers were classified as Type 1 or Type 2 according to their reaction to the m-ATPase and detailed morphologic and morphometric studies were made. The muscles showed two clearly distinct layers, a central layer and a peripheral layer, chiefly composed of Type 2 fibers. The fibers in the central layer were larger in size than those in the peripheral layer.  相似文献   

18.
Summary Neural elements within the parenchyma of the sebaceous gland have not been reported previously. Nerve endings have been observed only in the connective tissue surrounding the gland or in close association with the undifferentiated basal cells.In this study, electron microscopy revealed the possible presence of nerve endings (or terminal portions of neural elements) in the suprabasal level of functional sebaceous glands of pinnae of white rats. Morphologically, there are two distinct types of nerve endings. Type 1 is bordered by a membrane of relatively irregular contour and contains a single mitochondrion, various-sized vesicles, numerous microtubules, fine neurofilament-like fibrils, and occasional ribosome-like granules. Type II is also bordered by a membrane, but its contour was relatively smooth and rounded. Moreover, Type II contains many mitochondria, varying in size, density, and the arrangement of cristae. While ribosome-like granules are scattered throughout the structure in relative abundance, there are scarcely any fine neurofilament-like fibrils or microtubules. Whether these two structures are sensory or autonomic fibers could not be determined by electron microscopic examination.  相似文献   

19.
Grant J 《PloS one》2012,7(2):e31697
The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca(2+)-imaging on isolated taste cells, it was observed that SP induces Ca(2+) -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca(2+)-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca(2+)-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca(2+)-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca(2+) responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.  相似文献   

20.
Summary The innervation of the pancreas of the domestic fowl was studied electron microscopically. The extrapancreatic nerve is composed mostly of unmyelinated nerve fibers with a smaller component of myelinated nerve fibers. The latter are not found in the parenchyma. The pancreas contains ganglion cells in the interlobular connective tissue. The unmyelinated nerve fibers branch off along blood vessels. Their synaptic terminals contact with the exocrine and endocrine tissues. The synaptic terminals can be divided into four types based on a combination of three kinds of synaptic vesicles. Type I synaptic terminals contain only small clear vesicles about 600 Å in diameter. Type II terminals are characterized by small clear and large dense core vesicles 1,000 Å in diameter. Type III terminals contain small clear vesicles and small dense core vesicles 500 Å in diameter. Type IV terminals are characterized by small and large dense core vesicles. The exocrine tissue receives a richer nervous supply than the endocrine tissue. Type II and IV terminals are distributed in the acinus, and they contact A and D cells of the islets. B cells and pancreatic ducts are supplied mainly by Type II terminals, the blood vessels by Type IV terminals.This work was supported by a scientific research grant (No. 144017) and (No. 136031) from the Ministry of Education of Japan to Prof. M. Yasuda  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号