首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biologists long believed that, once development is completed, no new neurons are produced in the forebrain. However, as is now firmly established, new neurons can be produced at least in two specific forebrain areas: the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampal formation. Neurogenesis within the adult DG occurs constitutively throughout postnatal life, and the rate of neurogenesis within the DG can be altered under various physiological and pathophysiological conditions. The process of adult neurogenesis within the DG is a multi-step process (proliferation, differentiation, migration, targeting, and synaptic integration) that ends with the formation of a post-mitotic functionally integrated new neuron. Various markers are expressed during specific stages of adult neurogenesis. The availability of such markers allows the time-course and fate of newly born cells to be followed within the DG in a detailed and precise fashion. Several of the available markers (e.g., PCNA, Ki-67, PH3, MCM2) are markers for proliferative events, whereas others are more specific for early phases of neurogenesis and gliogenesis within the adult DG (e.g., nestin, GFAP, Sox2, Pax6). In addition, markers are available allowing events to be distinguished that are related to later steps of gliogenesis (e.g., vimentin, BLBP, S100beta) or neurogenesis (e.g., NeuroD, PSA-NCAM, DCX).  相似文献   

2.
Genetic visualization of neurogenesis   总被引:2,自引:0,他引:2  
Neurons are generated from stem or progenitor cells in discrete areas in the adult brain. The exact temporal and spatial distribution of adult neurogenesis has, however, been difficult to establish because of inherent limitations with the currently used techniques, and there are numerous controversies with regard to whether neurons are generated in specific regions or in response to insults. We describe here the generation of transgenic mice that express conditionally active Cre recombinase under the control of a nestin enhancer element. These mice allow the recombination of reporter alleles specifically in neural stem and progenitor cells and the visualization of their progeny in the adult brain. This offers a simple and efficient way to visualize live adult born neurons without the caveats of currently used techniques.  相似文献   

3.
Neurogenesis in the adult hippocampus   总被引:1,自引:0,他引:1  
New neurons continue to be generated in two privileged areas of the adult brain: the dentate gyrus of the hippocampal formation and the olfactory bulb. Adult neurogenesis has been found in all mammals studied to date, including humans. The process of adult neurogenesis encompasses the proliferation of resident neural stem and progenitor cells and their subsequent differentiation, migration, and functional integration into the pre-existing circuitry. This article summarizes recent findings regarding the developmental steps involved in adult hippocampal neurogenesis and the possible functional roles that new hippocampal neurons might play.  相似文献   

4.
Neurogenesis in the developing neocortex is a strictly regulated process of cell division and differentiation. Here we report that a gradual retreat of canonical Wnt signaling in the cortex from lateral-to-medial and anterior-to-posterior is a prerequisite of neurogenesis. Ectopic expression of a β-catenin/LEF1 fusion protein maintains active canonical Wnt signaling in the developing cortex and delays the expression onset of the neurogenic factors Pax6, Ngn2 and Tbr2 and subsequent neurogenesis. Contrary to this, conditional ablation of β-catenin accelerates expression of the same neurogenic genes. Furthermore, we show that a sustained canonical Wnt activity in the lateral cortex gives rise to cells with hippocampal characteristics in the cortical plate at the expense of the cortical fate, and to cells with dentate gyrus characteristics in the hippocampus. This suggests that the dose of canonical Wnt signaling determines cellular fate in the developing cortex and hippocampus, and that recession of Wnt signaling acts as a morphogenetic gradient regulating neurogenesis in the cortex.  相似文献   

5.
This paper aimed at investigating the alterations in interstitial cells of Cajal (ICCs) in the murine small intestine from 0-day to 56-day post-partum (P0–P56) by immunohistochemistry. The Kit+ ICCs, which were situated around myenteric nerve plexus (ICC-MY) formed a loose cellular network at P0 which changed into an intact one before P32. The density of ICC-MY increased from P0 to P12, and then decreased until P32. In contrast, the estimated total amount increased more than 15-fold at P32 than that at P0. Some Kit+/BrdU+ cells were observed at 24 h after one BrdU injection to the different-aged mice, and the number decreased from P2 to P24 and vanished at P32. Actually a few Kit+/BrdU+ cells can be observed at 1 h after one BrdU injection at P10, and the amount doubled at 24 h along with paired Kit+/BrdU+ cells. A number of BrdU+ ICCs were also labeled with CD34, CD44 and insulin-like growth factor I receptor. About 65% ICCs were BrdU+ at P32 after daily BrdU injection from P0. Our results indicate that an age-dependent proliferation is involved in the postnatal development of ICC-MY which increase greatly in cell numbers and proliferative ICCs may originate from ICCs progenitor cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Feng Mei and Jiang Zhu have contributed equally to this work.  相似文献   

6.
目的探讨胎次、性别是否对成年小鼠海马齿状回神经发生及学习记忆产生影响。方法运用Morris水迷宫系统检测第1~3胎成年小鼠的学习记忆能力,腹腔注射BrdU,标记神经干细胞,检测不同胎次、性别小鼠海马齿状回中的神经发生的差异。结果 (1)在同性别、不同胎次成年小鼠间,第2胎的学习记忆能力(LMA)均显著地高于第1、3胎的,其影响规律为LMA2〉LMA1〉LMA3,且P〈0.05;在同胎次、不同性别成年小鼠间,雌性小鼠的LMA均高于雄性小鼠的,但其差异无显著性(P〉0.05)。(2)在同性别、不同胎次成年小鼠间,第2胎海马DG新生神经细胞的数量(N)均高于第1、3胎的,其影响规律分别为NF2〉NF3〉NF1和NM2〉NM1〉NM3,但其差异无显著性(P〉0.05);在同胎次、不同性别成年小鼠间,雌性小鼠的N均高于雄性小鼠的,但其差异无显著性(P〉0.05)。结论胎次、性别对实验动物神经发生及学习记忆等方面产生的影响是肯定的。因此,在使用实验动物时,应予以充分考虑,尽量使用胎次、性别相同的。  相似文献   

7.
Neural stem and progenitor cells typically exhibit a density-dependent survival and expansion, such that critical densities are required below which clonogenic progenitors are lost. This suggests that short-range autocrine factors may be critical for progenitor cell maintenance. We report here that purines drive the expansion of ventricular zone neural stem and progenitor cells, and that purine receptor activation is required for progenitor cells to be maintained as such. Neural progenitors expressed P2Y purinergic receptors and mobilized intracellular calcium in response to agonist. Receptor antagonists suppressed proliferation and permitted differentiation into neurons and glia in vitro, while subsequent removal of purinergic inhibition restored progenitor cell expansion. Real-time bioluminescence imaging of extracellular ATP revealed that the source of extracellular nucleotides are the progenitor cells themselves, which appear to release ATP in episodic burst events. Enzyme histochemistry of the adult rat brain for ectonucleotidase activity revealed that NTDPase, which acts to degrade active ATP and thereby clears it from areas of active purinergic transmission, was selectively localized to the subventricular zone and the dentate gyrus, regions in which neuronal differentiation proceeds from the progenitor cell pool. These data suggest that purine nucleotides act as proliferation signals for neural progenitor cells, and thereby serve as negative regulators of terminal neuronal differentiation. As a result, progenitor cell-derived neurogenesis is thus associated with regions of both active purinergic signaling and modulation thereof.  相似文献   

8.

Background

The roles of caspase 3 on the kainic acid-mediated neurodegeneration, dendritic plasticity alteration, neurogenesis, microglial activation and gliosis are not fully understood. Here, we investigate hippocampal changes using a mouse model that receive a single kainic acid-intracerebral ventricle injection. The effects of caspase 3 inhibition on these changes were detected during a period of 1 to 7 days post kainic acid injection.

Result

Neurodegeneration was assessed by Fluoro-Jade B staining and neuronal nuclei protein (NeuN) immunostaining. Neurogenesis, gliosis, neuritic plasticity alteration and caspase 3 activation were examined using immunohistochemistry. Dendritic plasticity, cleavvage-dependent activation of calcineurin A and glial fibrillary acidic protein cleavage were analyzed by immunoblotting. We found that kainic acid not only induced neurodegeneration but also arouse several caspase 3-mediated molecular and cellular changes including dendritic plasticity, neurogenesis, and gliosis. The acute caspase 3 activation occurred in pyramidal neurons as well as in hilar interneurons. The delayed caspase 3 activation occurred in astrocytes. The co-injection of caspase 3 inhibitor did not rescue kainic acid-mediated neurodegeneration but seriously and reversibly disturb the structural integrity of axon and dendrite. The kainic acid-induced events include microglia activation, the proliferation of radial glial cells, neurogenesis, and calcineurin A cleavage were significantly inhibited by the co-injection of caspase 3 inhibitor, suggesting the direct involvement of caspase 3 in these events. Alternatively, the kainic acid-mediated astrogliosis is not caspase 3-dependent, although caspase 3 cleavage of glial fibrillary acidic protein occurred.

Conclusions

Our results provide the first direct evidence of a causal role of caspase 3 activation in the cellular changes during kainic acid-mediated excitotoxicity. These findings may highlight novel pharmacological strategies to arrest disease progression and control seizures that are refractory to classical anticonvulsant treatment.  相似文献   

9.
10.
11.
Prenatal stress during fetal development results in the blockade of neurogenesis in the dentate gyrus in adulthood. Present study was undertaken to investigate the dominant role of the glucocorticoid receptors in corticosterone actions on the neurogenesis of fetal hippocampal progenitor cells. For that purpose, expressions of key molecules affected by corticosterone and dexamethasone were compared during proliferation and differentiation of the hippocampal progenitor cells. Corticosterone (2 microM) significantly decreased the number of bromodeoxyuridine-labeled cells (about 50%) and caused the dendritic atrophy in microtubule-associated protein 2-labeled cells. The expressions of NeuroD, BDNF, and NR1 mRNA levels and protein levels of p-ERK and p-CREB were remarkably decreased by corticosterone in a dose-dependent manner. In contrast, dexamethasone, a glucocorticoid receptor (GR) specific agonist, had an inhibitory effect on proliferation, but not differentiation. It is concluded that corticosterone elicits its effects on neurogenesis including proliferation and differentiation whereas stimulation of the glucocorticoid receptor is sufficient to decrease only proliferation.  相似文献   

12.
Numerous studies have demonstrated that traumatic brain injury (TBI) increases hippocampal neurogenesis in the rodent brain. However, the mechanisms underlying increased neurogenesis after TBI remain unknown. Continuous neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) in the adult brain. The mechanism that maintains active neurogenesis in the hippocampal area is not known. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ (mossy fiber). The mossy fiber of dentate granular cells contains high levels of chelatable zinc in their terminal vesicles, which can be released into the extracellular space during neuronal activity. Previously, our lab presented findings indicating that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia or epilepsy. Using a weight drop animal model to mimic human TBI, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after TBI. Thus, we injected a zinc chelator, clioquinol (CQ, 30 mg/kg), into the intraperitoneal space to reduce brain zinc availability twice per day for 1 week. Neuronal death was evaluated with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after TBI. The number of degenerating neurons (FJB (+)) and live neurons (NeuN (+)) was similar in vehicle and in CQ-treated rats at 1 week after TBI. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX) immunostaining 1 week after TBI. The number of BrdU, Ki67 and DCX positive cell was increased after TBI. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. The present study shows that zinc chelation did not prevent neurodegeneration but did reduce TBI-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal neurogenesis after TBI.  相似文献   

13.
14.
Binge ethanol exposure decreases neurogenesis in adult rat hippocampus   总被引:10,自引:0,他引:10  
Alcoholism is associated with cognitive deficits and loss of brain mass. Recent studies have indicated that neural progenitor cells proliferate throughout life forming neurons, astrocytes, and oligodendrocytes. The dentate gyrus is one neurogenic region of the adult brain containing neural progenitor cells. To determine if binge ethanol (EtOH) exposure alters neural progenitor cell proliferation and survival, bromodeoxyuridine was administered to adult male rats following an acute or chronic binge exposure paradigm. For an acute binge, rats were gavaged with a 5 g/kg dose of EtOH or vehicle, administered bromodeoxyuridine, and killed either 5 h or 28 days after EtOH treatment. In a 4-day, chronic-binge paradigm, rats were infused with EtOH three times per day (mean dose 9.3 g/kg/day) or isocaloric control diet. Rats were given bromodeoxyuridine once a day for the 4 days of chronic binge treatment, then perfused either immediately following the last dose of EtOH or 28 days later. In both EtOH treatment groups, binge EtOH decreased neural progenitor cell proliferation. Following the chronic four-day binge, neural progenitor cell survival was decreased. These studies are the first to show EtOH inhibition of neural progenitor cell proliferation and survival in the adult, a possible new mechanism underlying alcoholic cognitive dysfunction.  相似文献   

15.
Food storing is seasonal in birds like chickadees, nuthatches and jays, occurring at high levels in fall and winter and low levels in spring and summer. Memory for cache sites is hippocampus dependent in chickadees and both the recruitment of new neurons into the hippocampus and the total size of the hippocampus change seasonally. Unlike seasonal change in the vocal control nuclei of songbirds, however, change in the hippocampus appears not to be controlled by photoperiod. The annual timing of hippocampal neuronal recruitment and change in hippocampal size is quite variable, reaching maximum levels at different times of year in different studies. The amount of food-storing activity by chickadees is known to be influenced by flock dominance structure, energy balance, food availability, and other seasonally varying factors. The variable timing of seasonal change in the hippocampus may indicate that the hippocampus of food-storing birds changes annually in response to change in the intensity of food storing behaviour itself.  相似文献   

16.
The stimulation of neurogenesis is an exciting novel therapeutic option for diseases of the central nervous system, ranging from depression to neurodegeneration. One major bottleneck in screening approaches for neurogenesis-inducing compounds is the very demanding in vivo quantification of newborn neurons based on stereological techniques. To effectively develop compounds in this area, novel fast and reliable techniques for quantification of in vivo neurogenesis are needed. In this study, we introduce a flow cytometry-based method for quantifying newly generated neurons in the brain based on the counting of cell nuclei from dissected brain regions. Important steps involve density sedimentation of the cell nuclei, and staining for the proliferation marker bromodeoxy uridine and nuclear cell type markers such as NeuN. We demonstrate the ability of the technique to detect increased neurogenesis in the hippocampus of animals which underwent physical exercise and received fluoxetine treatment.  相似文献   

17.
We have previously reported that MGS0039, a novel antagonist of group II metabotropic glutamate receptors (mGluRs), exerts antidepressant-like effects in experimental animal models. Recent studies suggest that the behavioral effects of chronic antidepressant treatment are mediated by the stimulation of neurogenesis in the hippocampus. In the present study, we examined the effects of MGS0039 on cell proliferation in the adult mouse hippocampus. MGS0039 (5 or 10mg/kg) or fluvoxamine was administered chronically to male ICR mice over a period of 14 days. Multiple bromodeoxyuridine (BrdU) administrations were performed after the last drug injection to label dividing cells. Immunohistochemical analyses after BrdU injections revealed that chronic MGS0039 treatment enhanced BrdU-positive cells in the dentate gyrus ( approximately 62% increase) in the same manner as chronic fluvoxamine treatment. This is the first in vivo study to demonstrate an increase in cell proliferation following a blockade of group II mGluRs. These findings raise the possibility that MGS0039 may exert antidepressant-like effects by modulating cell proliferation in the hippocampus.  相似文献   

18.
Nitric oxide regulates neurogenesis in the developing and adult brain. The olfactory epithelium is a site of neurogenesis in the adult and previous studies suggest a role for nitric oxide in this tissue during development. We investigated whether neuronal precursor proliferation and differentiation is regulated by nitric oxide using primary cultures of olfactory epithelial cells and an immortalized, clonal, neuronal precursor cell line derived from adult olfactory epithelium. In these cultures NOS inhibition reduced cell proliferation and stimulated neuronal differentiation, including expression of a voltage-dependent potassium conductance of the delayed rectifier type. In the neuronal precursor cell line, differentiation was associated with a significant decrease in nitric oxide release. In contrast, addition of nitric oxide stimulated proliferation and reduced neuronal differentiation. Nitric oxide regulated olfactory neurogenesis independently of added growth factors. Taken together these results indicate that nitric oxide levels can regulate cell proliferation and neuronal differentiation of olfactory precursor cells.  相似文献   

19.
Two hippocampal sectors show distinct responses to transient ischemia: the cornu Ammonis (CA)1 sector undergoes a delayed neuronal death followed by a lack of neuronal generation, while the dentate gyrus (DG) shows slight postischemic damage followed by an increased neurogenesis. Using the monkey experimental paradigm of transient whole brain global ischemia, the 'calpain-cathepsin hypothesis' was formulated in 1998. This hypothesis proposes that following ischemia calpain compromises the integrity of lysosomal membrane, causing a leakage of degrading hydrolytic enzymes--cathepsins--into the cytoplasm. Ischemia induces Ca(2+) mobilization, calpain activation, lysosomal membrane disruption, and cathepsin release, which all occur specifically in the CA1 sector and cause neuronal death. In the postischemic DG, a vascular niche has been implicated in adult neurogenesis, in that adventitial cells of the DG microvascular environment provoke postischemic up-reguation of neurogenesis with the aid of brain-derived neurotrophic factor and polysialylated form of the neural cell adhesion molecule. In parallel, Down's syndrome cell adhesion molecule has recently been shown to be expressed specifically in the neural progenitor cells of DG. In this review, we focus on the monkey experimental paradigm to reveal the remarkable contrasts between CA1 and DG in response to the ischemic insult.  相似文献   

20.
Since both living in an enriched environment and physical activity stimulate hippocampal neurogenesis in adult mice, we endeavored to examine whether preweaning enrichment, a sensory enrichment paradigm with very limited physical activity, had similar effects on neurogenesis later in life. Mice were removed from the dams for periods of increasing length from postnatal day 7 to 21, and exposed to a variety of sensory stimuli. At the age of 4 months, significant differences could be found between previously enriched and non-enriched animals when spontaneous activity was monitored. Enriched mice moved longer distances, and spent more time in a defined center zone of the open field. Adult neurogenesis was examined by labeling proliferating cells in the dentate gyrus with bromodeoxyuridine (BrdU). Cell proliferation, survival of the newborn cells, and net neurogenesis were similar in both groups. Volumetric measurements and stereological assessment of total granule cell counts revealed no difference in size of the dentate gyrus between both groups. Thus, in contrast to postweaning enrichment, preweaning enrichment had no lasting measurable effect on adult neurogenesis. One of the parameters responsible for this effect might be the lack of physical activity in preweaning enrichment. As physical activity is an integral part of postweaning enrichment, it might be a necessary factor to elicit a neurogenic response to environmental stimuli. The result could also imply that baseline adult hippocampal neurogenesis is independent of the changes induced by preweaning enrichment and might not contribute to the sustained types of plasticity seen in enriched animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号