首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porphyromonas gingivalis (P. gingivalis) is implicated in the initiation and progression of periodontitis. Human gingival fibroblasts (HGFs) are the major constituent of gingival connective tissue. P. gingivalis or its components such as lipopolysaccharide (LPS) upregulate the production of various inflammatory cytokines including interleukin (IL)-1 and IL-6 in HGFs. Recently, we demonstrated that the binding of P. gingivalis LPS to Toll-like receptor 4 (TLR4) on HGFs activates various second messenger systems (Biochem. Biophys. Res. Commun. 273, 1161-1167, 2000). In the present study, we examined the level of TLR4 expression on HGFs by flow cytometric analysis (FACS), and studied the levels of IL-1 and IL-6 in the culture medium upon LPS stimulation of HGFs by enzyme-linked immunosorbent assay (ELISA). Upon stimulation by P. gingivalis LPS for 24 h, HGFs that expressed a high level of TLR4 secreted significantly higher levels of IL-1 and IL-6 than HGFs that expressed a low level of TLR4. On the other hand, after stimulation with P. gingivalis LPS for 24 h, the level of TLR4 on the surface of HGFs decreased. These results suggest that the level of TLR4 expression on HGFs reflects the extent of inflammation in the gingival tissue, and that P. gingivalis LPS downregulates TLR4 expression on HGFs. These findings may be used to control inflammatory and immune responses in periodontal disease.  相似文献   

2.
Human gingival fibroblasts (HGFs), a predominant cell type in tooth-supporting structure, are presently recognized for their active role in the innate immune response. They produce a variety of inflammatory cytokines in response to microbial components such as LPS from the key periodontal pathogen, Porphyromonas gingivalis. In this study, we demonstrated that HGFs expressed mRNA of TLRs 1, 2, 3, 4, 5, 6, and 9, but not TLRs 7, 8, and 10. Stimulation of HGFs with highly purified TLR2 ligand (P. gingivalis LPS), TLR3 ligand (poly(I:C)), TLR4 ligand (Escherichia coli LPS), and TLR5 ligand (Salmonella typhimurium flagellin) led to expression of IL-8 and IDO. A potent TLR 9 ligand, CpG oligodeoxynucleotide 2006 had no effect, although HGFs showed a detectable TLR9 mRNA expression. No significant enhancement on IL-8 or IDO expression was observed when HGFs were stimulated with various combinations of TLR ligands. Surprisingly, the TLR9 ligand CpG oligodeoxynucleotide 2006 was able to specifically inhibit poly(I:C)-induced IL-8 and IDO expression. TNF-alpha enhanced TLR ligand-induced IL-8 production in HGFs, whereas IFN-gamma enhanced TLR ligand-induced IDO expression. HGF production of IDO in response to P. gingivalis LPS, IFN-gamma, or the two in combination inhibited T cell proliferation in MLRs. The observed T cell inhibition could be reversed by addition of either 1-methyl-dl-tryptophan or l-tryptophan. Our results suggest an important role of HGFs not only in orchestrating the innate immune response, but also in dampening potentially harmful hyperactive inflammation in periodontal tissue.  相似文献   

3.
The lipopolysaccharide (LPS) secreted by Porphyromonas gingivalis is implicated in the initiation and progression of periodontitis. Human gingival fibroblasts (HGFs) are the major constituent of gingival connective tissue. In this study, we examined the expression of Toll-like receptor 4 (TLR4) on HGFs by flow cytometric analysis, and studied the signal transduction induced by LPS stimulation of HGFs by enzyme-linked immunosorbent assay, Western blotting, and immunoprecipitation. We show that LPS binds to HGFs, and that HGFs express TLR4 and myeloid differentiation primary response gene 88 (MyD88). P. gingivalis LPS-induced interleukin (IL)-1 production in HGFs was inhibited by anti-TLR4 antibody. P. gingivalis LPS treatment of HGFs activated several intracellular proteins including protein tyrosine kinases, and upregulated the expression of IL-1 receptor-associated kinase (IRAK), nuclear factor-kappaB (NF-kappaB), and activating protein-1 (AP-1), and these events were suppressed by anti-TLR4 monoclonal antibody. Our findings suggest that the binding of P. gingivalis LPS to TLR4 on HGFs activates various second messenger systems.  相似文献   

4.
Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P < 0.05) suppressed by anti-TLR2 antibody or JNK inhibitor, and the phosphorylation level of JNK was significantly increased (P < 0.05). These results indicate that TLR2-JNK is the main signaling pathway of P. gingivalis LPS-induced cytokine production, while the cytokine induction by E. coli LPS was mainly via TLR4-NF-kappaB and TLR4-p38MAPK. This suggests that P. gingivalis LPS differs from E. coli LPS in its signaling pathway in THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.  相似文献   

5.
Anandamide (AEA) exhibits anti-inflammatory effects. However, its role in the periodontal field remains unknown. Here, we found that gingival crevicular fluid contained a detectable level of AEA. The cannabinoid receptors CB1 and CB2 were expressed by human gingival fibroblasts (HGFs), and markedly upregulated under pathological conditions. AEA significantly reduced the production of pro-inflammatory mediators (IL-6, IL-8 and MCP-1) induced by Porphyromonas gingivalis LPS in HGFs, and this effect was attenuated by AM251 and SR144528, selective antagonists of CB1 and CB2, respectively. Moreover, AEA completely blocked LPS-triggered NF-kappaB activation, implying that AEA may regulate hyperinflammatory reactions in periodontitis.  相似文献   

6.
Stimulation of the APC by Porphyromonas gingivalis LPS has been shown to result in the production of certain pro- and anti-inflammatory cytokines. However, the signaling pathways that regulate these processes are currently unknown. In the present study, the role of the phosphatidylinositol 3 kinase (PI3K)-Akt pathway in regulating P. gingivalis LPS-induced production of IL-10, IL-12 p40, and IL-12 p70 by human monocytes was investigated. P. gingivalis LPS selectively activates the PI3K-Akt pathway via Toll-like receptor 2, and inhibition of this pathway results in an abrogation of extracellular signal-regulated kinase 1/2 phosphorylation, whereas the activation of p38 and c-Jun N-terminal kinase 1/2 kinases were unaffected. Analysis of cytokine production following stimulation of monocytes with P. gingivalis LPS revealed that inhibition of the PI3K pathway differentially regulated IL-10 and IL-12 synthesis. IL-10 production was suppressed, whereas IL-12 levels were enhanced. Inhibition of P. gingivalis LPS-mediated activation of the PI3K-Akt pathway resulted in a pronounced augmentation of NF-kappaB p65 that was independent of IkappaB-alpha degradation. Furthermore, the ability of the PI3K-Akt pathway to modulate IL-10 and IL-12 production appears to be mediated by the selective suppression of extracellular signal-regulated kinase 1/2 activity, as the MEK1 inhibitor PD98059 closely mimicked the effects of wortmannin and LY294002 to differentially regulate IL-10 and IL-12 production by P. gingivalis LPS-stimulated monocytes. These studies provide new insight into how engagement of the PI3K-Akt pathway by P. gingivalis LPS affects the induction of key immunoregulatory cytokines that control both qualitative and quantitative aspects of innate and adaptive immunity.  相似文献   

7.
Park YD  Kim YS  Jung YM  Lee SI  Lee YM  Bang JB  Kim EC 《Cytokine》2012,60(1):284-293
Increased interleukin (IL)-17 and IL-23 levels exist in the gingival tissue of periodontitis patients, but the precise molecular mechanisms that regulate IL-17 and IL-23 production remain unknown. The aim of this study was to explore the role of SIRT1 signaling on Porphyromonas gingivalis lipopolysaccharide (LPS)-induced IL-17 and IL-23 production in human periodontal ligament cells (hPDLCs). IL-17 and IL-23 production was significantly increased in LPS-treated cells. LPS treatment also led to the upregulation of SIRT1 mRNA and protein expression. LPS-induced IL-17 and IL-23 upregulation was attenuated by pretreatment with inhibitors of phosphoinositide 3-kinase (PI3K), p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK), and NF-κB, as well as neutralizing antibodies against Toll-like receptors (TLRs) 2 and 4. Sirtinol treatment (a known SIRT1 inhibitor) or SIRT1 knockdown by small interfering RNA blocked LPS-stimulated IL-17 and IL-23 expression. Further investigation showed that LPS decreased osteoblast markers (i.e., ALP, OPN, and BSP) and concomitantly increased osteoclast markers (i.e., RANKL and M-CSF). This response was attenuated by inhibitors of the PI3K, p38, ERK, JNK, NF-κB, and SIRT1 pathways. These findings, for the first time, suggest that human periodontopathogen P. gingivalis LPS is implicated in periodontal disease bone destruction and may mediate IL-17 and IL-23 release from hPDLCs. This process is dependent, at least in part, on SIRT1-Akt/PI3K-MAPK-NF-κB signaling.  相似文献   

8.
Porphyromonas gingivalis and Campylobacter rectus are two major bacterial species implicated in the pathogenesis of periodontitis. P. gingivalis can antagonise the inflammatory response to other periodontal pathogens, a property commonly attributed to its lipopolysaccharide (LPS). The aim of this study was to investigate the capacity of P. gingivalis to antagonise C. rectus induced cytokine stimulation from human monocytes, and to investigate the involvement of its LPS. Primary human monocytes and Monomac-6 cells were challenged with culture supernatants from P. gingivalis and C. rectus, and levels of IL-1beta, IL-6 and IL-8 produced were measured by ELISA after 6h incubation. Purified P. gingivalis LPS was also added alone or in combination with C. rectus culture supernatant. Both species significantly stimulated the production of all three cytokines from the two cell lines, but P. gingivalis was considerably weaker inducer. Co-stimulation of the cells with P. gingivalis and C. rectus suppressed the cytokine-stimulatory capacity of the latter. P. gingivalis LPS alone was sufficient to antagonise IL-6 and IL-8, but not IL-1beta stimulation by C. rectus. In conclusion, mixed infections may impair host immune responses by reducing pro-inflammatory cytokine levels, which may be of relevance to the pathogenesis of periodontitis.  相似文献   

9.
Interleukin (IL)-6 has an important role in inflammatory diseases. Lysosomal enzymes cathepsins are widely expressed as cysteine proteases regulating inflammatory process. Caveolin-1 (Cav-1) is a scaffolding/regulatory membrane protein that interacts with signaling molecules. In this study, we investigated the role of Cav-1 on (1) the productivity, and (2) the enzymatic activity of cathepsin B and L in human gingival fibroblasts (HGFs) treated with IL-6 in the presence of soluble form of IL-6 receptor (sIL-6R). At first, we established the siRNA-mediated Cav-1 down-regulating in vitro systems by transient transfection of Cav-1 siRNA. The siRNA-mediated Cav-1 down-regulated cells were treated with IL-6/sIL-6R for indicated times. Then, cell lysates were collected, and examined the IL-6-induced signaling pathway, cathepsin B and L production, and measurement of cathepsins activity. To investigate the cathepsin L activity, cathepsin-(B + L) activity was measured after pretreatment with CA-074Me, a specific inhibitor for cathepsin B. We found that IL-6/sIL-6R enhanced significantly both production and activity of cathepsin B and L in HGFs. Interestingly, IL-6-mediated phosphorylation of both p44/42 MAPK and JNK was dramatically suppressed in Cav-1 down-regulated HGFs treated with IL-6/sIL-6R. In addition, both production and activity of cathepsin B and L were also significantly suppressed. Importantly, we demonstrated that JNK inhibition, but not p44/42 MAPK inhibition, significantly diminished IL-6/sIL-6R-induced cathepsin B and L production. Taken together, we concluded that IL-6/sIL-6R enhances cathepsin B and L production via IL-6/sIL-6R-mediated Cav-1-JNK-AP-1 pathway in HGFs. Our findings indicate that Cav-1 might be a therapeutic target for IL-6-mediated tissue degradation in periodontitis.  相似文献   

10.
Our previous study demonstrated that fibronectin (FN) is a negative regulator of Porphyromonas gingivalis fimbria-induced pathogenesis in the initiation and development of chronic periodontal diseases. We show herein the regulatory action of interleukin-6 (IL-6) on FN expression in fimbria-treated human gingival fibroblasts. Interestingly, the decrease in FN expression in the cells treated with fimbriae at a high dose (8 microg of protein ml(-1)) was negated by treatment with anti-IL-6 antibody. Also, the increase in FN expression in cells treated with fimbriae at a low dose (1 microg of protein ml(-1)) was inhibited by exogenous IL-6. These results suggest that P. gingivalis fimbria-stimulated FN expression in human gingival fibroblasts is negatively regulated by endogenous IL-6.  相似文献   

11.
Syndecans are constitutively shed from growing epithelial cells as the part of normal cell surface turnover. However, increased serum levels of the soluble syndecan ectodomain have been reported to occur during bacterial infections. The aim of this study was to evaluate the potential of lipopolysaccharide (LPS) from the periodontopathogen Porphyromonas gingivalis to induce the shedding of syndecan-1 expressed by human gingival epithelial cells. We showed that the syndecan-1 ectodomain is constitutively shed from the cell surface of human gingival epithelial cells. This constitutive shedding corresponding to the basal level of soluble syndecan-1 ectodomain was significantly increased when cells were stimulated with P. gingivalis LPS and reached a level comparable to that caused by phorbol myristic acid (PMA), an activator of protein kinase C (PKC) which is well known as a shedding agonist. The syndecan-1 shedding was paralleled by pro-inflammatory cytokine interleukin-1 beta (IL-1beta), IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) release. Indeed, secretion of IL-1beta and TNF-alpha increased following stimulation by P. gingivalis LPS and PMA, respectively. When recombinant forms of these proteins were added to the cell culture, they induced a concentration-dependent increase in syndecan-1 ectodomain shedding. A treatment with IL-1beta converting enzyme (ICE) specific inhibitor prevented IL-1beta secretion by epithelial cells stimulated by P. gingivalis LPS and decreased the levels of shed syndecan-1 ectodomain. We also observed that PMA and TNF-alpha stimulated matrix metalloproteinase-9 secretion, whereas IL-1beta and P. gingivalis LPS did not. Our results demonstrated that P. gingivalis LPS stimulated syndecan-1 shedding, a phenomenon that may be mediated in part by IL-1beta, leading to an activation of intracellular signaling pathways different from those involved in PMA stimulation.  相似文献   

12.
In the inflammatory gingival tissues of patients with periodontitis, cytokines such as interleukin (IL)-1 alpha, IL-1 beta, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha have been detected. Gingival fibroblasts are the major constituents of gingival tissue. We recently demonstrated that lipopolysaccharide (LPS) from periodontopathic bacteria induces inflammatory reactions in various tissues via CD14 and/or Toll-like receptors (TLRs) in gingival tissues [Biochem. Biophys. Res. Commun. 273 (2000) 1161]. To confirm this, we examined the expression of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF-alpha, CD14, TLR2, and TLR4 in human gingival fibroblasts (HGFs) obtained from patients with healthy or inflammatory gingiva using DNA microarray analysis. We also studied the expression levels of these proteins by flow cytometric analysis (FACS). The expression levels of all eight genes in the HGFs of the Inflammatory group were significantly higher than those in the Healthy group on DNA microarray analysis. FACS revealed that the expression levels of all eight proteins on the HGFs of the Inflammatory group were higher than those on the Healthy group. Our data indicated that these eight proteins in HGFs are involved in inflammatory conditions in the gingiva, including periodontal disease. Our results suggested that these eight proteins, in turn, act directly or indirectly on the immune response by activating host cells involved in inflammatory processes.  相似文献   

13.
It has been demonstrated that the neonatal suckling rat is more susceptible to endotoxin [lipopolysaccharide (LPS)]-induced colonic damage compared with weaned littermates. There is evidence to suggest that differences in the production of certain cytokines, including interleukin (IL)-4, IL-6, and IL-10, are associated with intestinal inflammation in children. We have examined the production, localization, and mRNA detection of these cytokines in suckling and weaned rat colons after bacterial LPS challenge. Suckling (10 day old) and weaned (25 day old) rats were injected with LPS (3 mg/kg ip). Colon samples were taken up to 4 h after treatment, and cytokines were measured by ELISA. LPS-induced cytokine levels were significantly different in suckling rats compared with weaned rats. Cytokine localization to the colonic mucosa was evident in suckling rats up to 4 h after LPS administration but was not consistently seen in weaned rats. The mRNA for cytokines examined were detected by RT-PCR in suckling but not in weaned rat colons after LPS treatment. Induction of neutropenia via anti-neutrophil serum (ANS) administration did not affect cytokine mRNA detection in neonates after LPS treatment. Weaned animals displayed positive detection of all cytokines examined after ANS. Therefore, we have shown that the suckling rat displays a different production and expression of colonic IL-4, IL-6, and IL-10 compared with weaned littermates after LPS challenge. Furthermore, neutrophils may be implicated in colonic cytokine expression after LPS challenge in rats.  相似文献   

14.
Costimulation between T cells and APCs is required for adaptive immune responses. CD40, an important costimulatory molecule, is expressed on a variety of cell types, including macrophages and microglia. The aberrant expression of CD40 is implicated in diseases including multiple sclerosis, rheumatoid arthritis, and Alzheimer's disease, and inhibition of CD40 signaling has beneficial effects in a number of animal models of autoimmune diseases. In this study, we discovered that IL-10, a cytokine with anti-inflammatory properties, inhibits LPS-induced CD40 gene expression. We previously demonstrated that LPS induction of CD40 in macrophages/microglia involves both NF-kappaB activation and LPS-induced production of IFN-beta, which subsequently activates STAT-1alpha. IL-10 inhibits LPS-induced IFN-beta gene expression and subsequent STAT-1alpha activation, but does not affect NF-kappaB activation. Our results also demonstrate that IL-10 inhibits LPS-induced recruitment of STAT-1alpha, RNA polymerase II, and the coactivators CREB binding protein and p300 to the CD40 promoter, as well as inhibiting permissive histone H3 acetylation (AcH3). IL-10 and LPS synergize to induce suppressor of cytokine signaling (SOCS)-3 gene expression in macrophages and microglia. Ectopic expression of SOCS-3 attenuates LPS-induced STAT activation, and inhibits LPS-induced CD40 gene expression, comparable to that seen by IL-10. These results indicate that SOCS-3 plays an important role in the negative regulation of LPS-induced CD40 gene expression by IL-10.  相似文献   

15.
Periodontitis is a multifactorial polymicrobial infection characterized by a destructive inflammatory process. Porphyromonas gingivalis, a Gram-negative anaerobic black-pigmented rod, which produces several virulence factors that stimulate human periodontal ligament cells (HPLCs) to produce various inflammatory mediators, has been implicated as a crucial etiologic agent in the initiation and progression of periodontitis. Since natural polyphenols such as resveratrol have growth-inhibitory effects on some bacterial pathogens and have shown chemo-preventive, anti-inflammatory and antioxidant activity, in the present study we used an HPLC model stimulated with lipopolysaccharide (LPS) of P. gingivalis to simulate the in vivo conditions such as those found in diseased periodontal sites. To determine whether resveratrol interferes with P. gingivalis LPS-activity and reduces the production of pro-inflammatory molecules, we investigated its effect on the cytokines IL-1β, IL-6, IL-8, IL-12 and TNF-α and NO production of HPLCs. The results showed that resveratrol treatment decreased in a dose- and time-dependent manner the NO expression induced by P. gingivalis LPS, correlated to an increased viability of infected HPLCs, and decreased the production of pro-inflammatory cytokines in HPLCs stimulated by P. gingivalis LPS. These results suggest that the ability of resveratrol to determine immunomodulatory effects could provide possible therapeutic applications for the treatment of periodontitis.  相似文献   

16.
17.
Periodontal disease is a chronic inflammatory disease in the oral cavity, which culminates in alveolar bone loss. Porphyromonas gingivalis is a consensus periodontal pathogen that has been implicated in adult forms of periodontitis. We previously demonstrated that IL-10-deficient mice exhibit a hyperinflammatory phenotype and are highly susceptible to P. gingivalis-induced periodontitis, indicating an important anti-inflammatory effect of IL-10 in suppressing bone loss. In this study, we analyzed the pathway(s) by which IL-10 deficiency leads to severe P. gingivalis-induced periodontitis. Because Stat3 is essential in IL-10 signaling, immune cell-specific Stat3-deficient mice were subjected to P. gingivalis infection to identify the key IL-10-responsive cells in preventing periodontitis. Myeloid cell-specific Stat3-deficient mice exhibited increased periodontal bone loss (p < 0.001), whereas T cell- and B cell-specific Stat3 mice were resistant, suggesting that macrophages (MP) and/or polymorphonuclear leukocytes are the key target cells normally suppressed by IL-10. Myeloid cell-specific Stat3-deficient mice exhibited elevated gingival CD40L gene expression in vivo compared with wild-type controls (p < 0.01), and Stat3-deficient MPs exhibited vigorous P. gingivalis-stimulated IL-12 production in vitro and induced elevated Ag-specific T cell proliferation compared with wild-type MPs (p < 0.01). Of importance, both IL-12p40/IL-10 and T cell/IL-10 double-deficient mice were resistant to P. gingivalis-induced periodontitis, demonstrating roles for both IL-12p40 and T cells in pathogenesis in a hyperinflammatory model of disease. These data demonstrate that P. gingivalis-induced periodontitis in IL-10-deficient mice is dependent upon IL-12p40-mediated proinflammatory T cell responses.  相似文献   

18.
19.
20.
The present study was designed to determine the role of endogenous brain interleukin (IL)-1 in the anorexic response to lipopolysaccharide (LPS). Intraperitoneal administration of LPS (5-10 microgram/mouse) induced a dramatic, but transient, decrease in food intake, associated with an enhanced expression of proinflammatory cytokine mRNA (IL-1beta, IL-6, and tumor necrosis factor-alpha) in the hypothalamus. This dose of LPS also increased plasma levels of IL-1beta. Intracerebroventricular pretreatment with IL-1 receptor antagonist (4 microgram/mouse) attenuated LPS-induced depression of food intake and totally blocked the LPS-induced enhanced expression of proinflammatory cytokine mRNA measured in the hypothalamus 1 h after treatment. In contrast, LPS-induced increases in plasma levels of IL-1beta were not altered. These findings indicate that endogenous brain IL-1 plays a pivotal role in the development of the hypothalamic cytokine response to a systemic inflammatory stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号