首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A significant goal in the post-genome era is to relate the annotated genome sequence to the physiological functions of a cell. Working from the annotated genome sequence, as well as biochemical and physiological information, it is possible to reconstruct complete metabolic networks. Furthermore, computational methods have been developed to interpret and predict the optimal performance of a metabolic network under a range of growth conditions. We have tested the hypothesis that Escherichia coli uses its metabolism to grow at a maximal rate using the E. coli MG1655 metabolic reconstruction. Based on this hypothesis, we formulated experiments that describe the quantitative relationship between a primary carbon source (acetate or succinate) uptake rate, oxygen uptake rate, and maximal cellular growth rate. We found that the experimental data were consistent with the stated hypothesis, namely that the E. coli metabolic network is optimized to maximize growth under the experimental conditions considered. This study thus demonstrates how the combination of in silico and experimental biology can be used to obtain a quantitative genotype-phenotype relationship for metabolism in bacterial cells.  相似文献   

4.
In silico models of Escherichia coli metabolism have been developed to predict metabolic behavior and propose experimentally testable hypotheses. However, a thorough assessment of the metabolic phenotype requires well-designed experimentation and reproducible experimental techniques. A method for the quantitative analysis of E. coli metabolism in vivo within the framework of in silico phenotypic phase plane analysis is presented. Using this approach, we have quantitatively studied E. coli metabolism in various environmental conditions and nutritional media. Our experimental methodology, in combination with steady-state metabolic models, can be used to study biological properties and evaluate the metabolic capabilities of microbes.  相似文献   

5.
Constraints-based models have been effectively used to analyse, interpret, and predict the function of reconstructed genome-scale metabolic models. The first generation of these models used "hard" non-adjustable constraints associated with network connectivity, irreversibility of metabolic reactions, and maximal flux capacities. These constraints restrict the allowable behaviors of a network to a convex mathematical solution space whose edges are extreme pathways that can be used to characterize the optimal performance of a network under a stated performance criterion. The development of a second generation of constraints-based models by incorporating constraints associated with regulation of gene expression was described in a companion paper published in this journal, using flux-balance analysis to generate time courses of growth and by-product secretion using a skeleton representation of core metabolism. The imposition of these additional restrictions prevents the use of a subset of the extreme pathways that are derived from the "hard" constraints, thus reducing the solution space and restricting allowable network functions. Here, we examine the reduction of the solution space due to regulatory constraints using extreme pathway analysis. The imposition of environmental conditions and regulatory mechanisms sharply reduces the number of active extreme pathways. This approach is demonstrated for the skeleton system mentioned above, which has 80 extreme pathways. As regulatory constraints are applied to the system, the number of feasible extreme pathways is reduced to between 26 and 2 extreme pathways, a reduction of between 67.5 and 97.5%. The method developed here provides a way to interpret how regulatory mechanisms are used to constrain network functions and produce a small range of physiologically meaningful behaviors from all allowable network functions.  相似文献   

6.
7.
In this report, a genome-scale reconstruction of Bacillus subtilis metabolism and its iterative development based on the combination of genomic, biochemical, and physiological information and high-throughput phenotyping experiments is presented. The initial reconstruction was converted into an in silico model and expanded in a four-step iterative fashion. First, network gap analysis was used to identify 48 missing reactions that are needed for growth but were not found in the genome annotation. Second, the computed growth rates under aerobic conditions were compared with high-throughput phenotypic screen data, and the initial in silico model could predict the outcomes qualitatively in 140 of 271 cases considered. Detailed analysis of the incorrect predictions resulted in the addition of 75 reactions to the initial reconstruction, and 200 of 271 cases were correctly computed. Third, in silico computations of the growth phenotypes of knock-out strains were found to be consistent with experimental observations in 720 of 766 cases evaluated. Fourth, the integrated analysis of the large-scale substrate utilization and gene essentiality data with the genome-scale metabolic model revealed the requirement of 80 specific enzymes (transport, 53; intracellular reactions, 27) that were not in the genome annotation. Subsequent sequence analysis resulted in the identification of genes that could be putatively assigned to 13 intracellular enzymes. The final reconstruction accounted for 844 open reading frames and consisted of 1020 metabolic reactions and 988 metabolites. Hence, the in silico model can be used to obtain experimentally verifiable hypothesis on the metabolic functions of various genes.  相似文献   

8.
Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate.  相似文献   

9.
A large-scale in silico evaluation of gene deletions in Saccharomyces cerevisiae was conducted using a genome-scale reconstructed metabolic model. The effect of 599 single gene deletions on cell viability was simulated in silico and compared to published experimental results. In 526 cases (87.8%), the in silico results were in agreement with experimental observations when growth on synthetic complete medium was simulated. Viable phenotypes were correctly predicted in 89.4% (496 out of 555) and lethal phenotypes were correctly predicted in 68.2% (30 out of 44) of the cases considered. The in silico evaluation was solely based on the topological properties of the metabolic network which is based on well-established reaction stoichiometry. No interaction or regulatory information was accounted for in the in silico model. False predictions were analyzed on a case-by-case basis for four possible inadequacies of the in silico model: (1) incomplete media composition, (2) substitutable biomass components, (3) incomplete biochemical information, and (4) missing regulation. This analysis eliminated a number of false predictions and suggested a number of experimentally testable hypotheses. A genome-scale in silico model can thus be used to systematically reconcile existing data and fill in our knowledge gaps about an organism.  相似文献   

10.
Genome-scale metabolic model of Helicobacter pylori 26695   总被引:6,自引:0,他引:6       下载免费PDF全文
A genome-scale metabolic model of Helicobacter pylori 26695 was constructed from genome sequence annotation, biochemical, and physiological data. This represents an in silico model largely derived from genomic information for an organism for which there is substantially less biochemical information available relative to previously modeled organisms such as Escherichia coli. The reconstructed metabolic network contains 388 enzymatic and transport reactions and accounts for 291 open reading frames. Within the paradigm of constraint-based modeling, extreme-pathway analysis and flux balance analysis were used to explore the metabolic capabilities of the in silico model. General network properties were analyzed and compared to similar results previously generated for Haemophilus influenzae. A minimal medium required by the model to generate required biomass constituents was calculated, indicating the requirement of eight amino acids, six of which correspond to essential human amino acids. In addition a list of potential substrates capable of fulfilling the bulk carbon requirements of H. pylori were identified. A deletion study was performed wherein reactions and associated genes in central metabolism were deleted and their effects were simulated under a variety of substrate availability conditions, yielding a number of reactions that are deemed essential. Deletion results were compared to recently published in vitro essentiality determinations for 17 genes. The in silico model accurately predicted 10 of 17 deletion cases, with partial support for additional cases. Collectively, the results presented herein suggest an effective strategy of combining in silico modeling with experimental technologies to enhance biological discovery for less characterized organisms and their genomes.  相似文献   

11.
12.
Genome-scale in silico metabolic networks of Escherichia coli have been reconstructed. By using a constraint-based in silico model of a reconstructed network, the range of phenotypes exhibited by E. coli under different growth conditions can be computed, and optimal growth phenotypes can be predicted. We hypothesized that the end point of adaptive evolution of E. coli could be accurately described a priori by our in silico model since adaptive evolution should lead to an optimal phenotype. Adaptive evolution of E. coli during prolonged exponential growth was performed with M9 minimal medium supplemented with 2 g of alpha-ketoglutarate per liter, 2 g of lactate per liter, or 2 g of pyruvate per liter at both 30 and 37 degrees C, which produced seven distinct strains. The growth rates, substrate uptake rates, oxygen uptake rates, by-product secretion patterns, and growth rates on alternative substrates were measured for each strain as a function of evolutionary time. Three major conclusions were drawn from the experimental results. First, adaptive evolution leads to a phenotype characterized by maximized growth rates that may not correspond to the highest biomass yield. Second, metabolic phenotypes resulting from adaptive evolution can be described and predicted computationally. Third, adaptive evolution on a single substrate leads to changes in growth characteristics on other substrates that could signify parallel or opposing growth objectives. Together, the results show that genome-scale in silico metabolic models can describe the end point of adaptive evolution a priori and can be used to gain insight into the adaptive evolutionary process for E. coli.  相似文献   

13.
Klebsiella pneumoniae is a Gram-negative bacterium of the family Enterobacteriaceae that possesses diverse metabolic capabilities: many strains are leading causes of hospital-acquired infections that are often refractory to multiple antibiotics, yet other strains are metabolically engineered and used for production of commercially valuable chemicals. To study its metabolism, we constructed a genome-scale metabolic model (iYL1228) for strain MGH 78578, experimentally determined its biomass composition, experimentally determined its ability to grow on a broad range of carbon, nitrogen, phosphorus and sulfur sources, and assessed the ability of the model to accurately simulate growth versus no growth on these substrates. The model contains 1,228 genes encoding 1,188 enzymes that catalyze 1,970 reactions and accurately simulates growth on 84% of the substrates tested. Furthermore, quantitative comparison of growth rates between the model and experimental data for nine of the substrates also showed good agreement. The genome-scale metabolic reconstruction for K. pneumoniae presented here thus provides an experimentally validated in silico platform for further studies of this important industrial and biomedical organism.  相似文献   

14.
Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is a capnophilic gram-negative bacterium that efficiently produces succinic acid, an industrially important four carbon dicarboxylic acid. In order to design a metabolically engineered strain which is capable of producing succinic acid with high yield and productivity, it is essential to optimize the whole metabolism at the systems level. Consequently, in silico modeling and simulation of the genome-scale metabolic network was employed for genome-scale analysis and efficient design of metabolic engineering experiments. The genome-scale metabolic network of M. succiniciproducens consisting of 686 reactions and 519 metabolites was constructed based on reannotation and validation experiments. With the reconstructed model, the network structure and key metabolic characteristics allowing highly efficient production of succinic acid were deciphered; these include strong PEP carboxylation, branched TCA cycle, relative weak pyruvate formation, the lack of glyoxylate shunt, and non-PTS for glucose uptake. Constraints-based flux analyses were then carried out under various environmental and genetic conditions to validate the genome-scale metabolic model and to decipher the altered metabolic characteristics. Predictions based on constraints-based flux analysis were mostly in excellent agreement with the experimental data. In silico knockout studies allowed prediction of new metabolic engineering strategies for the enhanced production of succinic acid. This genome-scale in silico model can serve as a platform for the systematic prediction of physiological responses of M. succiniciproducens to various environmental and genetic perturbations and consequently for designing rational strategies for strain improvement.  相似文献   

15.
赵欣  杨雪  毛志涛  马红武 《生物工程学报》2019,35(10):1914-1924
基因组尺度代谢网络模型已经成功地应用于指导代谢工程改造,但由于传统通量平衡分析法仅考虑化学计量学和反应方向约束,模拟得到的是理论最优结果,对一些现象如代谢溢流、底物层级利用等无法准确描述。近年来人们通过在代谢网络模型中引入新的蛋白量、热力学等约束发展了新的约束优化计算方法,可以更准确真实地模拟细胞在不同条件下的代谢行为。文中主要对近年来提出的多种酶约束模型进行评述,对酶约束引入的基本思路、酶约束的数学方程表示及优化目标设定、引入酶约束后对代谢通量计算结果的影响及酶约束模型在代谢工程菌种改造中的应用等进行了全面深入的介绍,并提出了已有各种方法存在的主要问题,展望了相关方法的未来发展方向。通过引入新的约束,代谢网络模型能够更精确模拟和预测细胞在环境和基因扰动下的代谢行为,为代谢工程菌种改造提供更准确可靠的指导。  相似文献   

16.
17.
Genome-scale flux analysis of Escherichia coli DH5alpha growth in a complex medium was performed to investigate the relationship between the uptake of various nutrients and their metabolic outcomes. During the exponential growth phase, we observed a sequential consumption order of serine, aspartate and glutamate in the complex medium as well as the complete consumption of key carbohydrate nutrients, glucose and trehalose. Based on the consumption and production rates of the measured metabolites, constraints-based flux analysis of a genome-scale E. coli model was then conducted to elucidate their utilization in the metabolism. The in silico analysis revealed that the cell exploited biosynthetic precursors taken up directly from the complex medium, through growth-related anabolic pathways. This suggests that the cell could be functioning in an energetically more efficient manner by reducing the energy needed to produce amino acids. The in silico simulation also allowed us to explain the observed rapid consumption of serine: excessively consumed external serine from the complex medium was mainly converted into pyruvate and glycine, which in turn, led to the acetate accumulation. The present work demonstrates the application of an in silico modeling approach to characterizing microbial metabolism under complex medium condition. This work further illustrates the use of in silico genome-scale analysis for developing better strategies related to improving microbial growth and enhancing the productivity of desirable metabolites.  相似文献   

18.
Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are “genome-scale” and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME) to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available.  相似文献   

19.
This paper describes the use of a discrete mathematical model to represent the basic mechanisms of regulation of the bacteria E. coli in batch fermentation. The specific phenomena studied were the changes in metabolism and genetic regulation when the bacteria use three different carbon substrates (glucose, glycerol, and acetate). The model correctly predicts the behavior of E. coli vis-à-vis substrate mixtures. In a mixture of glucose, glycerol, and acetate, it prefers glucose, then glycerol, and finally acetate. The model included 67 nodes; 28 were genes, 20 enzymes, and 19 regulators/biochemical compounds. The model represents both the genetic regulation and metabolic networks in an inrtegrated form, which is how they function biologically. This is one of the first attempts to include both of these networks in one model. Previously, discrete mathematical models were used only to describe genetic regulation networks. The study of the network dynamics generated 8 (2(3)) fixed points, one for each nutrient configuration (substrate mixture) in the medium. The fixed points of the discrete model reflect the phenotypes described. Gene expression and the patterns of the metabolic fluxes generated are described accurately. The activation of the gene regulation network depends basically on the presence of glucose and glycerol. The model predicts the behavior when mixed carbon sources are utilized as well as when there is no carbon source present. Fictitious jokers (Joker1, Joker2, and Repressor SdhC) had to be created to control 12 genes whose regulation mechanism is unknown, since glycerol and glucose do not act directly on the genes. The approach presented in this paper is particularly useful to investigate potential unknown gene regulation mechanisms; such a novel approach can also be used to describe other gene regulation situations such as the comparison between non-recombinant and recombinant yeast strain, producing recombinant proteins, presently under investigation in our group.  相似文献   

20.
基于约束的基因组尺度代谢网络模型(genome-scale metabolic models,GEMs)分析已被广泛应用于代谢表型的预测.而实际细胞中代谢速率除计量学约束外,还受到酶资源可用性和反应热力学可行性等其他因素影响,在GEMs中整合酶资源约束或者热力学约束构建多约束代谢网络模型可以进一步缩小优化解空间,提升细...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号