首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

2.
Activated tumor necrosis factor alpha (TNF-alpha) receptor 1 (TNFR1) recruits TNFR1-associated death domain protein (TRADD), which in turn triggers two opposite signaling pathways leading to caspase activation for apoptosis induction and NF-kappaB activation for antiapoptosis gene upregulation. Here we show that Stat1 is involved in the TNFR1-TRADD signaling complex, as determined by employing a novel antibody array screening method. In HeLa cells, Stat1 was associated with TNFR1 and this association was increased with TNF-alpha treatment. TNFR1 signaling factors TRADD and Fas-associated death domain protein (FADD) were also found to interact with Stat1 in a TNF-alpha-dependent process. Our in vitro recombinant protein-protein interaction studies demonstrated that Stat1 could directly interact with TNFR1 and TRADD but not with FADD. Interaction between Stat1 and receptor-interacting protein (RIP) or TNFR-associated factor 2 (TRAF2) was not detected. Examination of Stat1-deficient cells showed an apparent increase in TNF-alpha-induced TRADD-RIP and TRADD-TRAF2 complex formation, while interaction between TRADD and FADD was unaffected. As a consequence, TNF-alpha-mediated I-kappaB degradation and NF-kappaB activation were markedly enhanced in Stat1-deficient cells, whereas overexpression of Stat1 in 293T cells blocked NF-kappaB activation by TNF-alpha. Thus, Stat1 acts as a TNFR1-signaling molecule to suppress NF-kappaB activation.  相似文献   

3.
Trimeric tumor necrosis factor (TNF) binding leads to recruitment of TRADD to TNFR1. In current models, TRADD recruits RIP, TRAF2, and FADD to activate NF-kappaB, Jun N-terminal protein kinase (JNK), and apoptosis. Using stable short-hairpin RNA (shRNA) knockdown (KD) cells targeting these adaptors, TNF death-inducing signaling complex immunoprecipitation demonstrates competitive binding of TRADD and RIP to TNFR1, whereas TRAF2 recruitment requires TRADD. Analysis of KD cells indicates that FADD is necessary for Fas-L- or TRAIL- but not TNF-induced apoptosis. Interestingly, TRADD is dispensable, while RIP is required for TNF-induced apoptosis in human tumor cells. TRADD is required for c-Jun phosphorylation upon TNF exposure. RIP KD abrogates formation of complex II following TNF exposure, whereas TRADD KD allows efficient RIP-caspase 8 association. Treatment with TRAIL also induces formation of a complex II containing FADD, RIP, IKKalpha, and caspase 8 and 10, leading to activation of caspase 8. Our data suggest that TNF triggers apoptosis in a manner distinct from that of Fas-L or TRAIL.  相似文献   

4.
TRADD is a multifunctional signaling adaptor protein that is recruited to TNFR1 upon ligand binding. The C-terminal of TRADD comprises the "death domain" that is responsible for association of TNFR1 and other death domain-containing proteins such as FADD and RIP. The N-terminal domain (N-TRADD) promotes the recruitment of TRAF2 to TNFR1 by binding to the C-terminal of TRAF2, leading to the activation of JNK/AP1 and NF-kappa B. The solution structure of N-TRADD was determined, revealing a novel protein fold. A combination of NMR, BIAcore, and mutagenesis experiments was used to help identify the site of interaction of N-TRADD with C-TRAF2, providing a framework for future attempts to selectively inhibit the TNF signaling pathways.  相似文献   

5.
X-linked ectodermal dysplasia receptor (XEDAR) is a recently isolated member of the tumor necrosis factor receptor family that is highly expressed during embryonic development and binds to ectodysplasin-A2 (EDA-A2). In this report, we demonstrate that although XEDAR lacks a death domain, it nevertheless induces apoptosis in an EDA-A2-dependent fashion. The apoptosis-inducing ability of XEDAR is dependent on the activation of caspase 8 and can be blocked by its genetic and pharmacological inhibitors. Although XEDAR-induced apoptosis can be blocked by dominant-negative Fas-associated death domain (FADD) protein and FADD small interfering RNA, XEDAR does not directly bind to FADD, tumor necrosis factor receptor-associated death domain (TRADD) protein, or RIP1. Instead, XEDAR signaling leads to the formation of a secondary complex containing FADD, caspase 8, and caspase 10, which results in caspase activation. Thus, XEDAR belongs to a novel class of death receptors that lack a discernible death domain but are capable of activating apoptosis in a caspase 8- and FADD-dependent fashion. XEDAR may represent an early stage in the evolution of death receptors prior to the emergence of the death domain and may play a role in the induction of apoptosis during embryonic development and adult life.  相似文献   

6.
Several chemical compounds not known to interact with tumor necrosis factor (TNF) signal transducing proteins inhibit TNF-mediated activation of vascular endothelial cells (EC). Four structurally diverse agents, arachidonyl trifluoromethylketone, staurosporine, sodium salicylate, and C6-ceramide, were studied. All four agents caused EC apoptosis at concentrations that inhibited TNF-induced IkappaBalpha degradation. However, evidence of apoptosis was not evident until after several (e.g. 3-12) hours of treatment, whereas 2 h of treatment was sufficient to inhibit TNF responses. IL-1-induced IkappaBalpha degradation was unaffected by these treatments. Inhibition of TNF signaling could not be prevented with either of the broad spectrum caspase inhibitors zVADfmk or yVADcmk. The inhibition of p38 kinase with SB203580 prevented the inhibition of TNF signaling by all agents except arachidonyl trifluoromethylketone. No changes in the levels or molecular weights of the adaptor proteins TRADD (TNF receptor-associated death domain), RIP (receptor-interacting protein), or TRAF2 (TNF receptor-associated factor-2) were caused by apoptogenic drugs. However, TNF receptor 1 (TNFR1) surface expression was significantly reduced by all four agents. Furthermore, TNF-dependent recruitment of TRADD to surface TNFR1 was also inhibited. These data suggest that several putative inhibitors of TNF signaling work by triggering apoptosis and that an early event coincident with the initiation of apoptosis, preceding evidence of injury, is loss of TNFR1. Consistent with this hypothesis, cotreatment of EC with the metalloproteinase inhibitor Tapi (TNF-alpha proteinase inhibitor) blocked the reduction in surface TNFR1 by apoptogenic drugs and prevented inhibition of TNF-induced IkappaBalpha degradation without blocking apoptosis. TNFR1 loss could be a mechanism to limit inflammation in response to apoptotic cell death.  相似文献   

7.
The adapter protein FADD consists of two protein interaction domains and is an essential component of the death inducing signaling complex (DISC) that is formed by activated death receptors of the tumor necrosis factor (TNF) receptor family. The FADD death domain binds to activated receptors such as Fas or other adapters such as TRADD, whereas the FADD death effector domain binds to procaspase 8. Each domain can interact with its target in the absence of the other domain, and this has led to the idea that the two domains function independently. FADD death domain interactions with Fas and TRADD are thought to occur on the same surface; however, the regulation of these interactions is poorly understood. We developed a modified reverse two-hybrid method that can identify mutations, which inhibit some protein-protein interactions without affecting other interactions. Using this method, we identified mutations in FADD that prevent binding to Fas but do not affect binding to TRADD. Surprisingly, these mutations were in the death effector domain rather than the death domain. To test whether the mutants function in mammalian cells, we expressed wild type or mutant FADD molecules in FADD-deficient cells. Wild type FADD rescued both Fas ligand- and TNF-dependent signaling, whereas the FADD death effector domain mutants rescued only TNF signaling. These data indicate that in contrast to current models, the death effector domain of FADD is involved in interaction with Fas.  相似文献   

8.
Receptor-interacting protein (RIP) plays a critical role in tumor necrosis factor alpha (TNF-alpha)-induced NF-kappaB activation. However, the mechanism by which RIP mediates TNF-alpha-induced signal transduction is not fully understood. In this study, we reconstituted RIP-deficient Jurkat T cells with a fusion protein composed of full-length MEKK3 and the death domain of RIP (MEKK3-DD). In these cells, MEKK3-DD substitutes for RIP and directly associates with TRADD in TNF receptor complexes following TNF-alpha stimulation. We found that TNF-alpha-induced NF-kappaB activation was fully restored by MEKK3-DD in these cells. In contrast, expression of a fusion protein composed of NEMO, a component of the IkappaB kinase complex, and the death domain of RIP (NEMO-DD) cannot restore TNF-alpha-induced NF-kappaB activation in RIP-deficient cells. These results indicate that the role of RIP is to specifically recruit MEKK3 to the TNF-alpha receptor complex, whereas the forced recruitment of NEMO to the TNF-alpha receptor complex is insufficient for TNF-alpha-induced NF-kappaB activation. Although MEKK2 has a high degree of homology with MEKK3, MEKK2-DD, unlike MEKK3-DD, also fails to restore TNF-alpha-induced NF-kappaB activation in RIP-deficient cells, indicating that RIP-dependent recruitment of MEKK3 plays a specific role in TNF-alpha signaling.  相似文献   

9.
The tumor necrosis factor (TNF) superfamily member TNF-like weak inducer of apoptosis (TNFSF12, CD255) (TWEAK) can stimulate apoptosis in certain cancer cells. Previous studies suggest that TWEAK activates cell death indirectly, by inducing TNFα-mediated autocrine signals. However, the underlying death-signaling mechanism has not been directly defined. Consistent with earlier work, TWEAK assembled a proximal signaling complex containing its cognate receptor FN14, the adaptor TRAF2, and cellular inhibitor of apoptosis protein 1 (cIAP1). Neither the death domain adaptor Fas-associated death domain nor the apoptosis-initiating protease caspase-8 associated with this primary complex. Rather, TWEAK induced TNFα secretion and TNF receptor 1-dependent assembly of a death-signaling complex containing receptor-interacting protein 1 (RIP1), FADD, and caspase-8. Knockdown of RIP1 by siRNA prevented TWEAK-induced association of FADD with caspase-8 but not formation of the FN14-TRAF2-cIAP1 complex and inhibited apoptosis activation. Depletion of the RIP1 E3 ubiquitin ligase cIAP1 enhanced assembly of the RIP1-FADD-caspase-8 complex and augmented cell death. Conversely, knockdown of the RIP1 deubiquitinase CYLD inhibited these functions. Depletion of FADD, caspase-8, BID, or BAX and BAK but not RIP3 attenuated TWEAK-induced cell death. Pharmacologic inhibition of the NF-κB pathway or siRNA knockdown of RelA attenuated TWEAK induction of TNFα and association of RIP1 with FADD and caspase-8. These results suggest that TWEAK triggers apoptosis by promoting assembly of a RIP1-FADD-caspse-8 complex via autocrine TNFα-TNFR1 signaling. The proapoptotic activity of TWEAK is modulated by cIAP1 and CYLD and engages both the extrinsic and intrinsic signaling pathways.  相似文献   

10.
Toll-like receptor 3 (TLR3) is a pattern-recognition receptor known to initiate an innate immune response when stimulated by double-stranded RNA (dsRNA). Components of TLR3 signaling, including TIR domain-containing adapter inducing IFN-α (TRIF), have been demonstrated to contribute to dsRNA-induced cell death through caspase-8 and receptor interacting protein (RIP)1 in various human cancer cells. We provide here a detailed analysis of the caspase-8 activating machinery triggered in response to Poly(I:C) dsRNA. Engagement of TLR3 by dsRNA in both type I and type II lung cancer cells induces the formation of an atypical caspase-8-containing complex that is devoid of classical death receptors of the TNFR superfamily, but instead is physically associated to TLR3. The recruitment of caspase-8 to TLR3 requires RIP1, and is negatively modulated by cellular inhibitor of apoptosis protein (cIAP)2-TNF receptor-associated factor (TRAF)2-TNFR-associated death domain (TRADD) ubiquitin ligase complex, which regulates RIP1 ubiquitination. Intriguingly, unlike Fas- or TRAILR-dependent death signaling, caspase-8 recruitment and activation within the TLR3 death-signaling complex appears not to be stringently dependent on Fas-associated with death domain (FADD). Our findings uncover a novel aspect of the molecular mechanisms involved during apoptosis induced by the innate immune receptor TLR3 in cancer cells.  相似文献   

11.
12.
We speculated that focal adhesion kinase (FAK) might play a critical role in the TNFα-induced cell death. In this study, we found that FAK−/− cells are more sensitive to TNFα-induced apoptosis in the presence of actinomycin D (Act D) compared to FAK+/− cells. Prosurvival pathways are activated by the rapid recruitment of complex I, comprising TNFR1, TRADD, RIP and TRAF2, which leads to the activation of the NF-κB pathway. On the other hand, proapoptotic pathways are activated by complex II, the death-inducing signaling complex (DISC), which contains TNFR1, TRADD, RIP, and FADD, and procaspase-8 proteins. As TNFR1, TRADD, and RIP are included in both Complex I and DISC, we speculated that RIP might be a key protein. Coimmunoprecipitation assays revealed that RIP is included in complex I in FAK+/− cells, and FAK was associated with RIP. On the other hand, RIP is included in DISC in FAK−/− cells. FAK might be a key protein in the formation of complex I and the activation of NF-κB. Furthermore, Akt was activated in FAK+/− cells, but not FAK−/− cells. In conclusion, we first demonstrated that FAK determines the pathway leading to death or survival in TNFα/ActD-stimulated fibroblasts.  相似文献   

13.
14.
Cytokine signaling involves the participation of many adaptor proteins, including the docking protein TNF receptor-associated factor-2 (TRAF-2), which is believed to transmit the TNF-alpha signal through both the I kappa B/NF-kappa B and c-Jun N-terminal kinase (JNK)/stress-related protein kinase (SAPK) pathways. The physiological role of TRAF proteins in cytokine signaling in intestinal epithelial cells (IEC) is unknown. We characterized the effect of a dominant-negative TRAF-2 delivered by an adenoviral vector (Ad5dnTRAF-2) on the cytokine signaling cascade in several IEC and also investigated whether inhibiting the TRAF-2-transmitting signal blocked TNF-alpha-induced NF-kappa B and IL-8 gene expression. A high efficacy and level of Ad5dnTRAF-2 gene transfer were obtained in IEC using a multiplicity of infection of 50. Ad5dnTRAF-2 expression prevented TNF-alpha-induced, but not IL-1 beta-induced, I kappa B alpha degradation and NF-kappa B activation in NIH-3T3 and IEC-6 cells. TNF-alpha-induced JNK activation was also inhibited in Ad5dnTRAF-2-infected HT-29 cells. Induction of IL-8 gene expression by TNF-alpha was partially inhibited in Ad5dnTRAF-2-transfected HT-29, but not in control Ad5LacZ-infected, cells. Surprisingly, IL-1 beta-mediated IL-8 gene expression was also inhibited in HT-29 cells as measured by Northern blot and ELISA. We concluded that TRAF-2 is partially involved in TNF-alpha-mediated signaling through I kappa B/NF-kappa B in IEC. In addition, our data suggest that TRAF-2 is involved in IL-1 beta signaling in HT-29 cells. Manipulation of cytokine signaling pathways represents a new approach for inhibiting proinflammatory gene expression in IEC.  相似文献   

15.
TNFR1 associated death domain protein (TRADD) contains an N-terminal TRAF binding domain and a C-terminal death domain along with nuclear import and export sequences that cause shuttling between the cytoplasm and nucleus. The death domain of TRADD contains the nuclear import sequence and expression of the core death domain (nuclear TRADD) results in exclusive nuclear localization and activation of a distinct apoptotic pathway. Cytoplasmic TRADD activates apoptosis through Fas-associated death domain protein (FADD) and caspase-8 activation that was blocked by caspase inhibitors or dominant-negative FADD. These inhibitors did not inhibit death induced by nuclear TRADD, which could only be inhibited by combining caspase inhibitors and a serine protease inhibitor. The pathway activated by nuclear TRADD requires caspase-9 catalytic activity. However, apoptosis activating factor deficiency confers only partial protection from death. This pathway represents an alternate means by which TRADD can regulate cell death independently of FADD and caspase-8 that occurs from the nucleus rather than the cytoplasm.  相似文献   

16.
A site in the Epstein-Barr virus (EBV) transforming protein LMP1 that constitutively associates with the tumor necrosis factor receptor 1 (TNFR1)-associated death domain protein TRADD to mediate NF-kappaB and c-Jun N-terminal kinase activation is critical for long-term lymphoblastoid cell proliferation. We now find that LMP1 signaling through TRADD differs from TNFR1 signaling through TRADD. LMP1 needs only 11 amino acids to activate NF-kappaB or synergize with TRADD in NF-kappaB activation, while TNFR1 requires approximately 70 residues. Further, LMP1 does not require TRADD residues 294 to 312 for NF-kappaB activation, while TNFR1 requires TRADD residues 296 to 302. LMP1 is partially blocked for NF-kappaB activation by a TRADD mutant consisting of residues 122 to 293. Unlike TNFR1, LMP1 can interact directly with receptor-interacting protein (RIP) and stably associates with RIP in EBV-transformed lymphoblastoid cell lines. Surprisingly, LMP1 does not require RIP for NF-kappaB activation. Despite constitutive association with TRADD or RIP, LMP1 does not induce apoptosis in EBV-negative Burkitt lymphoma or human embryonic kidney 293 cells. These results add a different perspective to the molecular interactions through which LMP1, TRADD, and RIP participate in B-lymphocyte activation and growth.  相似文献   

17.
Saito K  Meyer K  Warner R  Basu A  Ray RB  Ray R 《Journal of virology》2006,80(9):4372-4379
We have previously shown that hepatitis C virus (HCV) core protein modulates multiple cellular processes, including those that inhibit tumor necrosis factor alpha (TNF-alpha)-mediated apoptosis. In this study, we have investigated the signaling mechanism for inhibition of TNF-alpha-mediated apoptosis in human hepatoma (HepG2) cells expressing core protein alone or in context with other HCV proteins. Activation of caspase-3 and the cleavage of DNA repair enzyme poly(ADP-ribose) polymerase were inhibited upon TNF-alpha exposure in HCV core protein-expressing HepG2 cells. In vivo protein-protein interaction studies displayed an association between TNF receptor 1 (TNFR1) and TNFR1-associated death domain protein (TRADD), suggesting that the core protein does not perturb this interaction. A coimmunoprecipitation assay also suggested that HCV core protein does not interfere with the TRADD-Fas-associated death domain protein (FADD)-procaspase-8 interaction. Further studies indicated that HCV core protein expression inhibits caspase-8 activation by sustaining the expression of cellular FLICE (FADD-like interleukin-1beta-converting enzyme)-like inhibitory protein (c-FLIP). Similar observations were also noted upon expression of core protein in context to other HCV proteins expressed from HCV full-length plasmid DNA or a replicon. A decrease in endogenous c-FLIP by specific small interfering RNA induced TNF-alpha-mediated apoptotic cell death and caspase-8 activation. Taken together, our results suggested that the TNF-alpha-induced apoptotic pathway is inhibited by a sustained c-FLIP expression associated with the expression of HCV core protein, which may play a role in HCV-mediated pathogenesis.  相似文献   

18.
Tumor necrosis factor (TNF)-alpha-induced activation of RhoA, mediated by TNF receptor 1 (TNFR1), is a prerequisite step in a pathway that leads to increased 20-kDa light chain of myosin (MLC20) phosphorylation and airway smooth muscle contraction. In this study, we have investigated the proximal events in TNF-alpha-induced RhoA activation. TNFR1 is localized to both lipid raft and nonraft regions of the plasma membrane in primary human airway smooth muscle cells. TNF-alpha engagement of TNFR1 recruited the adaptor proteins TRADD, TRAF-2, and RIP into lipid rafts and activated RhoA, NF-kappaB, and MAPK pathways. Depletion of cholesterol from rafts with methyl-beta-cyclodextrin caused a redistribution of TNFR1 to nonraft plasma membrane and prevented ligand-induced RhoA activation. By contrast, TNF-alpha-induced activation of NF-kappaB and MAPKs was unaffected by methyl-beta-cyclodextrin indicating that, in airway smooth muscle cells, activation of these pathways occurred independently of lipid rafts. Targeted knockdown of caveolin-1 completely abrogated TNF-alpha-induced RhoA activation, identifying this raft-resident protein as a positive regulator of the activation process. The signaling adaptors TRADD and RIP were also found to be necessary for ligand-induced RhoA activation. Taken together, our results suggest that in airway smooth muscle cells, spatial compartmentalization of TNFR1 provides a mechanism for generating distinct signaling outcomes in response to ligand engagement and define a mechanistic role for lipid rafts and caveolin-1 in TNF-alpha-induced activation of RhoA.  相似文献   

19.
TNF-alpha is a key pathogenic mediator of infectious and inflammatory diseases. HIV infection stimulates and dysregulates the immune system, leading to abnormal production of TNF-alpha. Despite its cytotoxic effect on some tumor cell lines, TNF-alpha functions as a growth stimulator for Kaposi's sarcoma (KS), a common malignancy in HIV-infected patients. However, signaling pathways linked to TNF-alpha-induced mitogenic responses are not well understood. We found that extracellular signal-regulated kinases 1 and 2 (ERK1/2) in KS cells were significantly activated by TNF-alpha through tyrosine/threonine phosphorylation. Using neutralizing anti-TNFR-I and TNFR-II mAbs, we have now obtained evidence that TNF-alpha-induced KS cell growth and ERK1/2 activation are mediated exclusively by TNFR-I, not by TNFR-II. A selective inhibitor for ERK1/2 activator kinases, PD98059, profoundly inhibited not only the activation of ERK1/2, but also the TNF-alpha-induced KS cell proliferation. We therefore propose that the TNFR-I-ERK1/2 pathway plays a pivotal role in transmitting to KS cells the mitogenic signals of TNF-alpha. TNFR-I possesses no intrinsic kinase activity, suggesting that TNFR-I-associated proteins may provide a link between TNFR-I and ERK1/2 activation. We found that actinomycin D treatment of KS cells selectively abolished expression of mitogen-activated protein kinase-activating death domain protein (MADD), a novel TNFR-I-associated death domain protein. TNF-alpha failed to induce ERK1/2 activation in the actinomycin D-treated cells. MADD may couple TNFR-I with the ERK1/2 signaling pathway required for KS cell proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号