共查询到20条相似文献,搜索用时 0 毫秒
1.
L B Schwartz T Bradford J H Griffin 《Biochemical and biophysical research communications》1985,129(1):76-81
Tryptase, the dominant protease in human mast cells, was examined for its effect on human prekallikrein. Tryptase in the presence and absence of heparin failed to activate prekallikrein as shown in a spectrophotometric assay for kallikrein employing benzoy 1-pro-phe-arg-p-nitroanilide. Treated prekallikrein was converted to active kallikrein by bovine trypsin. Prekallikrein cleavage products were analyzed by electrophoresis in polyacrylamide gels under denaturing conditions (+/- reduction). Tryptase caused no apparent cleavage under conditions where trypsin caused complete cleavage. Thus, tryptase, which has previously been shown to lack kallikrein and kininase activities, neither activates nor destroys prekallikrein. 相似文献
2.
Qi Peng Alan R McEuen R Christopher Benyon Andrew F Walls 《European journal of biochemistry》2003,270(2):270-283
There has long been conjecture over the degree to which there may be structural and functional heterogeneity in the tetrameric serine protease tryptase (EC 3.4.21.59), a major mediator of allergic inflammation. We have applied 2D gel electrophoresis to analyze the extent, nature, and variability of this heterogeneity in lysates of mast cells isolated from lung and skin, and in preparations of purified tryptase. Gels were silver stained, or the proteins transferred to nitrocellulose blots and probed with either tryptase-specific monoclonal antibodies or various lectins. Tryptase was the major protein constituent in mast cell lysates, and presented as an array of 9-12 diffuse immunoreactive spots with molecular masses ranging from 29 to 40 kDa, and pI values from 5.1 to 6.3. Although the patterns obtained for lung and skin tryptase were broadly similar, differences were observed between tissues and between individual donors. Lectin binding studies indicated the presence of mono-antennary or bi-antennary complex-type oligosaccharide with varying degrees of sialylation. Deglycosylation with protein-N-glycosidase F (PNGase F) reduced the size of both lung and skin tryptase, while incubation with PNGase F or neuraminidase narrowed the pI range, indicating variable degrees of glycosylation as a major contributor to the size and charge heterogeneity. Comparison of different purified preparations of lung and skin tryptase revealed no significant difference in pH profiles, but differences were seen in reactivity towards a range of chromogenic substrates, with substantial differences in Km, kcat and degree of cooperativity. Mathematical modeling indicated that the variety in kinetics parameters could not result solely from the sum of varying amounts of isoforms obeying Michaelis-Menten kinetics but with different values of Km and kcat. The heterogeneity demonstrated for tryptase in these studies suggests that there are important differences in tryptase function in different tissues. 相似文献
3.
N A Paterson S I Wasserman J W Said K F Austen 《Journal of immunology (Baltimore, Md. : 1950)》1976,117(4):1356-1362
Human lung mast cells dispersed by enzymatic digestion of human lung fragments were concentrated to greater than 50% purity by sedimentation in isopycnic and velocity gradients. The dispersed lung mast cells had a characteristic ultrasturctural appearance including granules with a scroll or reticular structural appearance including granules with a scroll or reticular structure surrounded by perigranular membranes. Histamine and preformed eosinophilotactic activity sedimented with mast cells on isopycnic gradients, and mast cells and these mediators were separated from the bulk of the other lung cells after velocity gradient sedimentation. The histamine content of isolated lung mast cells was calculated to range from 1.0 to 5.5 pg/cell. The quantity of SRS-A generated with anti-IgE or specific antigen was relatively limited but confined to the mast cell-rich fractions and associated with release of histamine and eosinophilotactic activity. 相似文献
4.
Arachidonic acid metabolism in purified human lung mast cells 总被引:9,自引:0,他引:9
S P Peters D W MacGlashan E S Schulman R P Schleimer E C Hayes J Rokach N F Adkinson L M Lichtenstein 《Journal of immunology (Baltimore, Md. : 1950)》1984,132(4):1972-1979
Arachidonic acid metabolism has been explored in preparations of purified human lung mast cells prelabeled with arachidonic acid (AA). Cells were of 83 to greater than 96% purity, and each experiment was performed with four to six different preparations of mast cells. After overnight culture of the purified cells in the presence of 3H-AA, followed by extensive washing in buffer, mast cell uptake of labeled AA was 61.4 +/- 14.8 pmol/10(6) cells with 21 +/- 2.4% of the label in phospholipids, 73 +/- 2.1% in neutral lipids, and 3.6 +/- 0.8% as free AA. Analysis of the distribution of radioactivity in phospholipid classes revealed 51.4 +/- 5.5% of the label in phosphatidylcholine, 14.5 +/- 1.6% in phosphatidylinositol, 12.0 +/- 3.0% in phosphatidylethanolamine, and 9.1 +/- 2.4% in sphingomyelin, with the rest in other phospholipid classes. Challenge of these cells with an optimal concentration of anti-IgE led to the release of 20 +/- 4.0% of cellular histamine and to a reduction in labeled phosphatidylcholine and phosphatidylinositol to 75.5 +/- 8.8% and 84.2 +/- 4.5% of the control levels, respectively, (p less than 0.05); anti-IgE challenge produced no statistically significant change in the quantities of other labeled phospholipids. Activation of human lung mast cells with anti-IgE led to the release of 3.4 +/- 1.3% of the cellular 3H as AA and AA metabolites (1.5 +/- 0.6% as unmetabolized AA) in conjunction with 16 +/- 4.3% of the cellular histamine. Although activation of human lung mast cells with ionophore A23187 caused 70 +/- 1.1% histamine release, a similar quantity of AA and AA metabolites was released (a total of 4.0 +/- 0.8% with 2.3 +/- 1.5% as unmetabolized AA). Analysis of the released metabolites by liquid scintillation spectrometry after high performance liquid chromatography separation showed that approximately equal amounts of metabolites were produced after mast cell activation with anti-IgE and ionophore A23187. In this series of experiments approximately equal amounts of cyclooxygenase and lipoxygenase products were generated.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
5.
Regulation of tryptase from human lung mast cells by heparin. Stabilization of the active tetramer 总被引:14,自引:0,他引:14
Tryptase was shown to be stabilized as an enzymatically active tetramer by association with heparin and dissociated to inactive monomers in the absence of heparin at 37 degrees C in physiologic buffer and in plasma. There was a 50% loss of tryptase activity at 37 degrees C by 6-8 min in both physiologic buffer and plasma. When heparin glycosaminoglycan was present, tryptase retained nearly full activity for 2 h in buffer and in plasma. Tryptase activity also decayed under standard assay conditions in the presence of synthetic ester and peptide substrates unless bound to heparin. That tryptase is bound to heparin at the pH and physiologic NaCl concentrations employed was shown by chromatography of tryptase on heparin-agarose, gel filtration, and velocity sedimentation. Elution of tryptase from heparin-agarose occurred at 0.8 M NaCl. Maximal stabilization of tryptase by heparin occurred at a weight ratio to tryptase that was equal to or greater than unity. Kcat/Km ratios for tryptase-heparin at 0.15 M NaCl and 37 degrees C were 0.9 X 10(6) s-1 M-1 for tosyl-L-Gly-Pro-Lys-p-nitroanilide and 1.7 X 10(6) s-1 M-1 for p-tosyl-L-arginine methyl ester and are among the highest reported for tryptic enzymes. The mechanism of heparin-dependent stabilization of tryptase was not due to indirect ion binding properties of heparin and was analyzed by Superose 12 high performance liquid chromatography. Active enzyme eluted with an apparent Mr of 132,000 +/- 10,000 (n = 3, +/- S.D.), whereas tryptase inactivated by incubation without heparin eluted with an apparent Mr of 34,000. The tetrameric structure of diisopropyl fluorophosphate-inhibited tryptase was also preserved after incubation with heparin at 37 degrees C but was reduced to monomeric subunits after incubation without heparin. That no appreciable degradation of tryptase occurs under conditions that cause dissociation of subunits was directly shown by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. Two different subunits of 34,000 and 33,000 Mr (after reduction) present in the intact enzyme (calculated to be 134,000 Mr) were also detected unchanged after inactivation of tryptase by dissociation of its subunits. Thus, the selective localization and association of heparin and tryptase in the human mast cell secretory granule most likely plays a major role in the regulation of tryptase after secretion. 相似文献
6.
Neovascularization and mast cells with tryptase activity increase simultaneously in human pterygium 总被引:1,自引:0,他引:1
Ribatti D Nico B Maxia C Longo V Murtas D Mangieri D Perra MT De Giorgis M Piras F Crivellato E Sirigu P 《Journal of cellular and molecular medicine》2007,11(3):585-589
Mast cells (MC) have been implicated in both normal and pathological angiogenesis, such as that in chronic inflammatory diseases and tumors. This assumption is partially supported by the close structural association between MC and blood vessels and the recruitment of these cells during tumor growth. MC release a number of angiogenic factors among which tryptase, a serine protease stored in MC granules, is one of the most active. In this study, we correlate the extent of angiogenesis with the number of tryptase-reactive MC in tissue fragments from pterygium and normal bulbar conjunctiva investigated by immunohistochemistry, using two murine monoclonal antibodies against the endothelial cell marker CD31 and the MC marker tryptase. Angiogenesis, measured as microvessel density, was highly correlated with MC tryptase-positive cell count in pterygium tissues. These results suggest that the characteristic neovascularization observed in pterygium may be sustained, at least in part, by MC angiogenic mediators, in particular tryptase. 相似文献
7.
目的: 利用人大肠组织的肥大细胞和肥大细胞激活的体外研究系统,评价实电解质钙(calcium ionophore A23187, CI)诱导肥大细胞释放类胰蛋白酶和组胺的能力和机制.方法: 经酶悬浮的人大肠肥大细胞与CI共同培养后收集上清液,并用酶联免疫吸附试验(ELISA)的方法检测类胰蛋白酶分泌量,用以玻璃纤维为基础的荧光比色法检测组胺释放量.结果: 经过15 min的培养,CI可引起浓度相关性的组胺和类胰蛋白酶释放.其中组胺的最大分泌量比基础分泌量超出了5.3倍以上,而类胰蛋白酶的最大分泌量则比基础分泌量超出了2.8倍以上.CI在浓度高于1.0 μmol/L时引起的组胺释放量明显多于类胰蛋白酶释放量.时间关系曲线显示,CI的作用从加样后10 s开始,6 min后达高峰并至少持续15 min.百日咳毒素和代谢抑制剂均能抑制CI引起的组胺和类胰蛋白酶释放.结论: 人大肠肥大细胞在受到CI刺激时具有释放类胰蛋白酶和组胺的能力,这个过程与肥大细胞膜G蛋白偶联受体的激活有关,并消耗能量. 相似文献
8.
9.
Effect of histamine and divalent cations on the activity and stability of tryptase from human mast cells 总被引:2,自引:0,他引:2
Tryptase from human mast cells is stabilized by negatively charged macromolecules such as heparin and is not affected by the protein inhibitors of serine proteinases normally present in human extracellular fluids. The current study demonstrated inhibition of tryptase-catalyzed cleavage of tosyl-Gly-Pro-Lys-p-nitroanilide by histamine and calcium, and destablization only by calcium. Calcium-mediated inhibition was competitive with a Ki of 30 mM. Cooperation of calcium with other extracellular cations or concentrations of calcium possible within cells or granules may permit calcium-mediated inhibition to occur in vivo. In contrast, only 5 mM calcium is needed to cause an irreversible 50% loss of tryptase activity after 60 min at room temperature. Histamine and N-methyl histamine concentrations of 2 mM to 10 mM inhibited tryptase activity by a different mechanism than calcium, resulting in sigmoid rather than hyperbolic kinetics. Whether this reflects cooperative binding of histamine to tryptase or conformational alterations of tryptase is not known. These concentrations of histamine are most relevant to those in mast cell secretory granules estimated at 100 mM, where tryptase is stored fully active and where histamine may play a role in attenuating tryptase activity. 相似文献
10.
The immunohistochemical demonstration of chymase and tryptase in human intestinal mast cells 总被引:7,自引:0,他引:7
Summary An immunohistochemical double-labelling technique for the simultaneous identification of mast cells containing tryptase alone (MCT) or chymase together with tryptase (MCTC) was evaluated quantitatively using two monoclonal antibodies, mAb 1222A (antitryptase) and mAb 1254B (antichymase). Saturation conditions were established for the binding of the antibodies to the mast cell enzymes by counting labelled mast cells in consecutive sections of normal human intestine incubated with serial dilutions of the antibodies. When, under such conditions, the antitryptase was applied after saturation with mAb 1254B, the reproducibility of the double-labelling procedure was excellent. MCT were located preferentially in the intestinal mucosa but, in contrast to what has previously been reported, they were not the predominant type of mast cell at this site. The percentage of MCT of the total number of immunopositive mast cells varied considerably in the colonic mucosa (7–67%, average 30%), while this was not the case in the small intestinal mucosa (5–26%, average 10%). Mast cell chymase, unlike tryptase, was not recognized by the antichymase antibody after aldehyde fixation and a higher apparent fraction of MCT therefore occurred after double labelling. These findings suggest that the proteinase composition of human mast cells, unlike that of murine mast cells, should not be taken as evidence of phenotypic heterogeneity. Taken together with previous observations, they suggest instead that the lack of chymase may be related to functional activity or stage of maturation of the mast cells. 相似文献
11.
The allosteric effect of salt on human mast cell tryptase 总被引:1,自引:0,他引:1
The inhibitory effect of potassium chloride and ammonium sulphate on purified human skin tryptase and bovine trypsin was studied enzyme-kinetically, using Z-Gly-Pro-Arg-pNA, Z-Gly-Pro-Arg-AMC, benzoyl-L-arginine ethyl ester (BAEE) and tosyl-L-arginine methyl ester (TAME) as substrates. With increasing salt concentrations, the curve of reaction velocity vs. substrate concentration changed from hyperbolic to sigmoidal when anilide substrates (Z-Gly-Pro-Arg-pNA or -AMC) were used. Only the Km value increased, while the Vmax value remained unchanged. The trend was similar with BAEE or TAME as the substrates. However, the effect of salt on the hydrolysis of these ester substrates was not as strong as on the hydrolysis of anilide substrates, and sigmoidal kinetics were not observed even at the highest KCl concentration (0.7 M) used. Heparin, used as a stabilizer, had no influence on this phenomenon, but it did slightly decrease the apparent Km and Vmax values in low-salt conditions. By comparison, trypsin was not as strongly affected by salt as tryptase, and the inhibition type was mixed competitive and non-competitive. The present results indicate that the salt acts on tryptase as an allosteric effector, and this should be carefully considered when enzyme kinetic parameters and enzyme activity of skin tryptase are measured. 相似文献
12.
L B Schwartz 《Journal of immunology (Baltimore, Md. : 1950)》1985,134(1):526-531
Two murine monoclonal antibodies were prepared against tryptase, the major neutral protease and protein component of human mast cells. The antibodies were termed G5 (IgG2B-kappa) and H4 (IgG1-kappa). They were specific for tryptase by an enzyme-linked immunosorbent assay and an immunotransblot technique. The latter procedure showed that H4 and G5 each bind to the 35,000 and 37,000 m.w. subunits of tryptase, indicating immunologic cross-reactivity between the subunits. The monoclonal antibodies reacted only with tryptase subunits in an extract of dispersed lung cells. By immunofluorescence microscopy, tryptase was further identified to be present only in cytoplasmic granules of Alcian Blue-stained mast cells in dispersed pulmonary cell preparations. No evidence for a mast cell subtype lacking tryptase was detected. In addition, a procedure for the purification of tryptase to homogeneity from dispersed pulmonary cells containing less than 10% mast cells was developed; this procedure involved high salt extraction, ammonium sulfate precipitation, and sequential chromatography with decyl-agarose, DEAE-agarose, and heparin-agarose. The procedure resulted in a higher yield even with less pure starting material than reported previously. Tryptase is a selective marker for mast cells in dispersed pulmonary cells, and can be detected with specific anti-tryptase antibodies. 相似文献
13.
Enzyme histochemical discrimination between tryptase and chymase in mast cells of human gut 总被引:2,自引:0,他引:2
We tested four synthetic substances for their histochemical value to demonstrate the catalytic activities of chymase or tryptase in mast cells in sections of human gut. Both Suc-Ala-Ala-Phe-4 methoxy-2-naphthylamide (MNA) and N-acetyl-L-methionine-alpha-naphthyl ester (alpha-N-O-Met) reacted with chymase but not tryptase in mast cells. Conversely, D-Val-Leu-Arg-MNA and Z-Ala-Ala-Lys-MNA were hydrolyzed by mast cell tryptase but not chymase. These results were confirmed by use of two inhibitors of chymotrypsin-like activity, chymostatin and Z-Gly-Leu-Phe-chloromethyl ketone (CK) and two inhibitors of trypsin-like activity, Tos-Lys-CK and D-Val-Leu-Arg-CK. Excellent staining reactions were obtained on cryostat sections of unfixed or aldehyde-fixed tissues and on paraffin sections of Carnoy-fixed tissues. For chymase, however, Suc-Ala-Ala-Phe-MNA is preferred on cryostat sections because it is more specific. On paraffin sections alpha-N-O-Met is preferred because other cells are not then stained. For tryptase, Z-Ala-Ala-Lys-MNA was more selective and more specific and is the preferred general purpose substrate on cryostat sections of aldehyde-fixed tissues and for paraffin sections. D-Val-Leu-Arg-MNA is the preferred substrate for cryostat sections of unfixed tissue. Only a limited number of mast cells showed a reaction for chymase, and these occurred mainly in the submucosa. All mast cells, however, gave a reaction for tryptase, and we recommend the use of either substrate for this enzyme for routine detection of mast cells in human tissues. Double staining for the two main mast cell proteases is most conveniently undertaken on paraffin sections of Carnoy-fixed tissues using MNA substrates for tryptase and alpha-N-O-Met for chymase. 相似文献
14.
L B Schwartz M S Kawahara T E Hugli D Vik D T Fearon K F Austen 《Journal of immunology (Baltimore, Md. : 1950)》1983,130(4):1891-1895
Tryptase, the dominant neutral protease of human pulmonary mast cell secretory granules, has the capacity in vitro to generate C3a anaphylatoxin from purified human C3. Only the alpha-chain of C3 is cleaved, and major fragments with apparent m.w. of 105,000, 39,500, 34,000, 29,000, and 9000 are detected by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis under reducing conditions. Fragments of 34,000 and 9000 m.w. are detected without reduction. A portion of the 9000 m.w. protein corresponds to C3a by virtue of its co-migration in SDS polyacrylamide gels with purified C3a and with trypsin-generated C3a, by its detection in a radioimmunoassay for C3a, and by its contractile activity on the guinea pig ileum bioassay. In the presence of heparin, another component of the mast cell secretory granule, the rate of appearance and the distribution of C3 cleavage fragments as assessed in SDS polyacrylamide gels are not appreciably changed with the exception that no C3a material can be detected in the SDS polyacrylamide gels or by radioimmunoassay and bioassay of the unresolved reaction mixture. Enhanced catabolism of authentic C3a by tryptase occurs in the presence of heparin and by analogy when C3a is generated from C3 by tryptase in the presence of heparin. Whereas tryptase secreted by activated human mast cells may generate C3a, a potentially important additional mediator of immediate hypersensitivity events, the concomitant release of heparin may serve to down-regulate C3a irrespective of its mechanism of generation. 相似文献
15.
Maxová H Novotná J Vajner L Tomásová H Vytásek R Vízek M Bacáková L Valousková V Eliásová T Herget J 《Physiological research / Academia Scientiarum Bohemoslovaca》2008,57(6):903-910
Chronic hypoxia results in hypoxic pulmonary hypertension characterized by fibrotization and muscularization of the walls of peripheral pulmonary arteries. This vessel remodeling is accompanied by an increase in the amount of lung mast cells (LMC) and the presence of small collagen cleavage products in the vessel walls. We hypothesize that hypoxia activates LMC, which release matrix metalloproteinases (MMPs) cleaving collagen and starting increased turnover of connective tissue proteins. This study was designed to determine whether in vitro hypoxia stimulates production of MMPs in rat LMC and increases their collagenolytic activity. The LMC were separated on the Percoll gradient and then were divided into two groups and cultivated for 24 h in 21 % O(2) + 5 % CO(2) or in 10 % O(2) + 5 % CO(2). Presence of the rat interstitial tissue collagenase (MMP-13) in LMC was visualized by immunohistological staining and confirmed by Western blot analysis. Total MMPs activity and tryptase activity were measured in both cultivation media and cellular extracts. Exposure to hypoxia in vitro increased the amount of cells positively labeled by anti-MMP-13 antibody as well as activities of all measured enzymes. The results therefore support the concept that LMC are an important source of increased collagenolytic activity in chronic hypoxia. 相似文献
16.
蛋白酶激活受体2(PAR-2)激动剂对肥大细胞释放类胰蛋白酶的影响 总被引:9,自引:0,他引:9
研究反肉桂酰-亮-异亮-甘-精-亮-鸟-[酰胺](tc-LIGRLO),一种PAR-2激动剂,对肥大细胞类胰蛋白酶释放的影响。结果显示,经过15min的培养,tc-LIGRLO可引起比基础分泌量增加1倍以上的类胰蛋白酶释放,作用强度超过抗IgE抗体和钙离子导入剂(calcium ionophore A23187,CI),而反PAR-2激动剂-反肉桂酰-鸟-亮-精-甘-异亮-亮-[酰胺](tc-OLRGIL)无此作用,培养时间延长到30min时对tc-LIGRLO的作用无明显影响,其时间关系曲线表明,tc-LIGRLO的作用从1min开始,3min后达高峰,结果表明,PAR-2激动剂tc-LIGRLO是一种高效类胰蛋白酶释放刺激剂,在肥大细胞上可能有PAR-2存在。 相似文献
17.
Evaluation of human peripheral blood leukocytes for mast cell tryptase 总被引:11,自引:0,他引:11
M C Castells A M Irani L B Schwartz 《Journal of immunology (Baltimore, Md. : 1950)》1987,138(7):2184-2189
Murine monoclonal and goat polyclonal antibodies against tryptase, the dominant neutral protease and protein component in secretory granules of human mast cells, were used to assess the presence of tryptase in peripheral leukocytes. Carnoy's fluid-fixed cytocentrifuge preparations of enriched populations of lymphocytes, monocytes, eosinophils, and neutrophils showed no reactivity with anti-tryptase antibodies by a sensitive indirect immunoperoxidase procedure. Dispersed human lung mast cells showed strong granular cytoplasmic staining with both antibodies, whereas only approximately 50% of the peripheral blood basophils detectable with Wright's stain were detected with anti-tryptase antibodies, and these showed a staining pattern that was faint, granular, and cytoplasmic at high concentrations of antibody. At lower antibody concentrations mast cell staining was still intense, whereas basophils were not stained. Extracts of neutrophils and lymphocytes of up to 90% purity had undetectable amounts of tryptase by an ELISA sandwich immunoassay, as well as undetectable enzymatic activity with tosyl-L-gly-pro-lys-p-nitroanilide (a sensitive substrate for tryptase) in the presence of soybean trypsin inhibitor. Extracts of basophil-enriched (6 to 50% purity) preparations contained 0.046 +/- 0.013 pg of tryptase per basophil by the immunoassay along with 2 X 10(-9) +/- 0.8 X 10(-9) U of tryptase-like enzyme activity per basophil, compared with corresponding values of 12 pg, 480 X 10(-9) U of tryptase per human lung mast cell. Thus very small amounts of tryptase are present in human basophils (approximately 0.4% of that found in mast cells), but not in other peripheral leukocytes. 相似文献
18.
Tryptase, the major neutral protease of human pulmonary mast cell secretory granules, rapidly inactivates human high m.w. kininogen (HMWK) in vitro. HMWK (5600 nM) lost 50% of its capacity to release kinin in response to kallikrein after a 5-min incubation with tryptase (31 nM), even though kinin activity was neither generated nor, when bradykinin was incubated with tryptase, destroyed by tryptase. The procoagulant activity of HMWK (51 nM) and the purified procoagulant chain (40 nM) that is derived from HMWK were each 72% inactivated after 7 min of incubation with tryptase (0.04 nM and 0.02 nM, respectively). Human urinary and pancreatic kallikrein did not inactivate this procoagulant activity under conditions in which kinin generation occurs. Complete cleavage of native single-chain HMWK by tryptase occurred in less than 10 min as analyzed by electrophoresis in sodium dodecyl sulfate polyacrylamide slab gels. The major products formed during the initial 2 min were proteins of 100,000 and 95,000 apparent m.w., and by 10 to 30 min were fragments of 74,000 and 67,000 apparent m.w. Reduction of these cleavage products yielded two major fragments of 67,000 and 66,000 apparent m.w. that were both present by 0.17 min. The presence of lower m.w. products, thought to be primarily from the carboxy-terminal procoagulant region of HMWK, were also detected with and without reduction. The capacity of tryptase to inactivate HMWK is consistent with the ability of other mast cell-derived mediators, such as heparin proteoglycan and prostaglandin D2, to suppress blood coagulation and thrombosis, and may play an important role in the biology of mast cell-dependent events in vivo. 相似文献
19.
Acetaldehyde is a widely distributed compound in the human environment and it is also formed in the human body from various endogenous and exogenous sources, exogenous ethanol being the most important one. Many alcohol-associated hypersensitivity reactions, e.g. Oriental flushing reaction, appear to be attributable to acetaldehyde rather than to ethanol itself. The pathogenetic mechanism behind such hypersensitivity reactions has been suggested to be histamine release from mast cells or blood basophils. However, the direct effects of acetaldehyde on mast cells, the main source of histamine in a mammalian body, have not been studied. The aim of the present study was, thus, to evaluate whether physiological concentrations of acetaldehyde could release histamine from purified rat peritoneal mast cells. The effects of ethanol were studied similarly. The results show that acetaldehyde, already at a concentration of 50 microM, significantly increases the release of histamine from mast cells. Ethanol has a similar effect but only at molar concentrations. These results indicate that acetaldehyde may contribute to the development of various hypersensitivity reactions by directly increasing histamine release from mast cells. 相似文献
20.
Generation of thromboxane A2 from highly purified human sinus mast cells after immunological stimulation. 总被引:1,自引:0,他引:1
H Mita T Ishii K Akiyama 《Prostaglandins, leukotrienes, and essential fatty acids》1999,60(3):175-180
To better understand metabolites of arachidonic acid generated from human mast cells, the present study assessed the capacity of human mast cells to synthesize thromboxane B2 (TXB2). Anti-IgE challenge of human sinus mast cells resulted in the generation of TXB2 in a dose-dependent manner with a maximal generation of 8.2+/-4.4 ng/10(6) cells (n = 12), which is about 10-fold lower than the maximal generation of prostaglandin D2 (PGD2). Pretreatment of the cells with OKY-046, an inhibitor of TXA synthase, prevented formation of TXB2 in a dose-dependent manner without affecting the generation of PGD2 or leukotriene C4. Experiments using indomethacin or MK-591, a potent FLAP inhibitor, showed that shunting of arachidonic acid did not occur in a single-cell suspension of mast cells. Analysis by RT-PCR revealed that two species of TXA synthase, the full-length TXA synthase mRNA (TXAS-1, 570 BP) and a small quantity of the alternate-spliced form (400 BP), were present in mast cells. When cellular levels of TXAS-1 mRNA were normalized to those of G3PDH mRNA, the relative concentration of TXAS-1 was 2.06+/-0.60 (n = 7) in highly purified sinus mast cells (92.3+/-3.0% pure) and 3.66+/-0.98 (n = 5) in eosinophils. 相似文献