首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The biological effectiveness of neutrons from the neutron therapy facility MEDAPP (mean neutron energy 1.9 MeV) at the new research reactor FRM II at Garching, Germany, has been analyzed, at different depths in a polyethylene phantom. Whole blood samples were exposed to the MEDAPP beam in special irradiation chambers to total doses of 0.14–3.52 Gy at 2-cm depth, and 0.18–3.04 Gy at 6-cm depth of the phantom. The neutron and γ-ray absorbed dose rates were measured to be 0.55 Gy min−1 and 0.27 Gy min−1 at 2-cm depth, while they were 0.28 and 0.25 Gy min−1 at 6-cm depth. Although the irradiation conditions at the MEDAPP beam and the RENT beam of the former FRM I research reactor were not identical, neutrons from both facilities gave a similar linear-quadratic dose–response relationship for dicentric chromosomes at a depth of 2 cm. Different dose–response curves for dicentrics were obtained for the MEDAPP beam at 2 and 6 cm depth, suggesting a significantly lower biological effectiveness of the radiation with increasing depth. No obvious differences in the dose–response curves for dicentric chromosomes estimated under interactive or additive prediction between neutrons or γ-rays and the experimentally obtained dose–response curves could be determined. Relative to 60Co γ-rays, the values for the relative biological effectiveness at the MEDAPP beam decrease from 5.9 at 0.14 Gy to 1.6 at 3.52 Gy at 2-cm depth, and from 4.1 at 0.18 Gy to 1.5 at 3.04 Gy at 6-cm depth. Using the best possible conditions of consistency, i.e., using blood samples from the same donor and the same measurement techniques for about two decades, avoiding the inter-individual variations in sensitivity or the differences in methodology usually associated with inter-laboratory comparisons, a linear-quadratic dose–response relationship for the mixed neutron and γ-ray MEDAPP field as well as for its fission neutron part was obtained. Therefore, the debate on whether the fission-neutron induced yield of dicentric chromosomes increases linearly with dose remains open.  相似文献   

2.
The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 106 Gy s−1 to 3.2 × 108 Gy s−1. Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.  相似文献   

3.
Databases on effects of chronic low-LET radiation exposure were analyzed by non-parametric statistical methods, to estimate the threshold dose rates above which radiation effects can be expected in vertebrate organisms. Data were grouped under three umbrella endpoints: effects on morbidity, reproduction, and life shortening. The data sets were compiled on a simple ‘yes’ or ‘no’ basis. Each data set included dose rates at which effects were reported without further details about the size or peculiarity of the effects. In total, the data sets include 84 values for endpoint “morbidity”, 77 values for reproduction, and 41 values for life shortening. The dose rates in each set were ranked from low to higher values. The threshold TDR5 for radiation effects of a given umbrella type was estimated as a dose rate below which only a small percentage (5%) of data reported statistically significant radiation effects. The statistical treatment of the data sets was performed using non-parametric order statistics, and the bootstrap method. The resulting thresholds estimated by the order statistics are for morbidity effects 8.1 × 10−4 Gy day−1 (2.0 × 10−4–1.0 × 10−3), reproduction effects 6.0 × 10−4 Gy day−1 (4.0 × 10−4–1.5 × 10−3), and life shortening 3.0 × 10−3 Gy day−1 (1.0 × 10−3–6.0 × 10−3), respectively. The bootstrap method gave slightly lower values: 2.1 × 10−4 Gy day−1 (1.4 × 10−4–3.2 × 10−4) (morbidity), 4.1 × 10−4 Gy day−1 (3.0 × 10−4–5.7 × 10−4) (reproduction), and 1.1 × 10−3 Gy day−1 (7.9 × 10−4–1.3 × 10−3) (life shortening), respectively. The generic threshold dose rate (based on all umbrella types of effects) was estimated at 1.0 × 10−3 Gy day−1.  相似文献   

4.
A conceptual model of the effects of chronic radiation on a population of phytoplankton and zooplankton in an oceanic nutrient layer is presented. The model shows that there are distinct threshold dose rates at which the different plankton populations become unsustainable. These are 10,400 μGy h−1 for phytoplankton and 125 μGy h−1 for zooplankton. Both these values are considerably greater than the current screening values for protection of 10 μGy h−1. The model highlights the effects of predator–prey dynamics in predicting that when the zooplankton is affected by the radiation dose, the phytoplankton population can increase. In addition, the model was altered to replicate the dose rates to the plankton of a previous ERICA Irish Sea assessment (24 μGy h−1 for zooplankton and 430 μGy h−1 to phytoplankton). The results showed only a 10% decrease in the zooplankton population and a 15% increase in the phytoplankton population. Therefore, at this level of dose, the model predicts that although the dose rate exceeds the guideline value, populations are not significantly affected. This result highlights the limitations of a single screening value for different groups of organisms.  相似文献   

5.
The basic principles underlying a four-discrete age group, logistic, growth model for the European lobster Homarus gammarus are presented and discussed at proof-of-concept level. The model considers reproduction, removal by predation, natural death, fishing, radiation and migration. Non-stochastic effects of chronic low linear energy transfer (LET) radiation are modelled with emphasis on 99Tc, using three endpoints: repairable radiation damage, impairment of reproductive ability and, at higher dose rates, mortality. An allometric approach for the calculation of LD50/30 as a function of the mass of each life stage is used in model calibration. The model predicts that at a dose rate of 1 Gy day−1, lobster population reproduction and survival become severely compromised, leading eventually to population extinction. At 0.01 Gy day−1, the survival rate of an isolated population is reduced by 10%, mainly through loss of fecundity, comparable to natural migration losses. Fishing is the main ecological stress and only dose rates in the range 0.03–0.1 Gy day−1 can achieve discernible effects above it. On the balance of radiation and other ecological stresses, a benchmark value of 0.01 Gy day−1 is proposed for the protection of lobster populations. This value appears consistent with available information on radiation effects in wildlife.  相似文献   

6.
The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient of the linear dose–response relationship for dicentric chromosomes was measured to be (0.146±0.016) Gy−1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose–response relationship for dicentric chromosomes established in blood of the same donor for 60Co γ-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14±4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient α for 60 MeV neutrons was determined from the measured average yield coefficient . For α, a value of (0.115±0.026) Gy−1 was obtained corresponding to an RBEM of 11±4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.  相似文献   

7.
The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-κB) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min−1, the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of 137Cs γ rays (10 mGy min−1). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or 137Cs γ rays, delivered at 10 mGy min−1, was similar. Although statistically significant levels of NF-κB activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student’s t-test, p < 0.05 or <0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min−1 induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.  相似文献   

8.
We report results on the induction of 8-azaguanine (8-AG)-resistant mutants in cultured human cells (EUE) exposed to 31 MeV protons. The spontaneous frequency of mutants was 5.6 +/- 0.7 x 10(-6) per viable cell. Gamma rays were taken as reference radiation. Expression times giving the highest frequency of mutants after 31 MeV protons and gamma irradiation were found to be about 10 days for both radiations. The dose-response relationship for mutant induction by protons, as determined at the optimal expression time, was compared to that obtained after gamma rays. The relative biological effectiveness (RBE) is 2.4 +/- 0.5, this value being higher than the RBE value determined for cell survival.  相似文献   

9.
Primary roots ofVicia faba were grown for 24 h in the presence of tritiated thymidine (1.85–18.5 kBq ml−1) and then irradiated with a dose of 1.5 Gy of60Co-gamma- rays. The aim of these experiments was to determine whether low-level endogenous beta-irradiation from incorporated radioactive thymidine could influence the frequencies of sister chromatid exchanges (SCEs) and the numbers of micronuclei induced by subsequent external irradiation with high doses of gamma-rays. The results demonstrated that the pretreatment with3H-dTh had no significant effect on the frequencies of SCEs in gamma-irradiated root tip cells ofVicia faba. In contrast to SCEs, the yields of micronuclei in the3H-dTh pretreated cells were altogether less than the yield induced by gamma-rays alone (protective effects).  相似文献   

10.
This study is based on our already published experimental data (Kowalska et al. in Radiat Environ Biophys 58:99–108, 2019) and is devoted to modeling of chromosome aberrations in human lymphocytes induced by 22.1 MeV/u 11B ions, 199 MeV/u 12C ions, 150 MeV and spread-out Bragg peak (SOBP) proton beams as well as by 60Co γ rays. The curvature of the dose–effect curves determined by the linear-quadratic model was considered in the frame of a simple analytical approach taking into account increase in the irradiation dose due to overlapping interaction regions of ion tracks. The model enabled to estimate effective interaction radius which could be compared with the physical expectations. The results were also compared to the Amorphous Track Structure Model of Katz which allows to get some additional information about the ion track structure. The analysis showed that the curvature of the experimental dose–effect curves mainly results from highly efficient repair processes of the DNA damage.  相似文献   

11.
The present work describes radiation-induced effects on vegetative, reproductive traits and psoralen content in Psoralea corylifolia L. The effects of gamma radiation on Psoralea seeds were investigated by exposing seeds with doses of 2.5, 5, 10, 15 and 20 kGy at dose rate of 1.65 kGyh−1 and studying the plant growth at three developmental stages: preflowering, flowering and post flowering (seed to seed) after irradiation. Irradiation with lower doses of gamma rays significantly improved vegetative traits while higher doses proved depressing for same parameters. Similar trend was followed in reproductive traits. Psoralen, showed highest concentration in seeds (7.56%) at 20 kGy and lowest in control roots (0.23%). Increment in psoralen was striking for higher gamma doses applied. These long-term changes in plant development may be attributed to alteration in plant genome induced by irradiation. The results show in depth development stimulation and enhancement of secondary metabolite in Psoralea corylifolia L. following low and high dose treatment respectively depicting the potential of gamma rays in plant biotechnology and metabolomics.  相似文献   

12.
Conidia of Beauveria bassiana and Metarhizium spp. smeared on glass slides were assayed for their responses to irradiation with weighted 312-nm UV-B and 365-nm UV-A at gradient doses of 0.005–1.1 and 1.0–18.0 J cm−2, respectively. All inverted, sigmoid dose–survival trends showed good fit to a survival model (r 2 ≥ 0.97), yielding respective UV-B LD50s of 0.23–0.59 and 0.05–0.65 J cm−2 for 24 B. bassiana and 36 Metarhizium isolates, and UV-A LD50s of 2.78–10.46 J cm−2 for 24 Metarhizium isolates. Myzus persicae apterae on detached leaves were sprayed with a concentrated spore suspension of B. bassiana or M. anisopliae, followed by exposure to the UV-B doses to cause 10–90% viability losses. These doses caused aphid mortality reductions as expected but affected neither spray-to-death period nor fungal growth on cadavers. The results highlight the merits of using UV-tolerant candidates and photoprotection measures in fungal formulations for pest control.  相似文献   

13.
Summary Vicia Faba bean roots were irradiated with 250 GeV hadrons and the induction of micronuclei was evaluated. A Relative Biological Efficiency (RBE) of about 1.8 was found using60Co-rays as reference radiation. For the production of multiple micronuclei the RBE value was determined to be 2.1. Cytological anomalies were detected after the hadron irradiation.Mailing address: CERN, CH-1211 Geneva 23, Switzerland  相似文献   

14.
The production of dicentric chromosomes in human lymphocytes by β-particles of yttrium-90 (Y-90) was studied in vitro to provide a basis of biological dosimetry after radiosynoviorthesis (RSO) of persistent synovitis by intra-articular administration of yttrium-90 citrate colloid. Since the injected colloid may leak into the lymphatic drainage exposing other parts of the body to radiation, the measurement of biological damage induced by β-particles of Y-90 is important for the assessment of radiation risk to the patients. A linear dose–response relationship (α = 0.0229 ± 0.0028 dicentric chromosomes per cell per gray) was found over the dose range of 0.2176–2.176 Gy. The absorbed doses were calculated for exposure of blood samples to Y-90 activities from 40 to 400 kBq using both Monte Carlo simulation and an analytical model. The maximum low-dose RBE, the RBEM which is equivalent to the ratio of the α coefficients of the dose–response curves, is well in line with published results obtained earlier for irradiation of blood of the same donor with heavily filtered 220 kV X-rays (3.35 mm copper), but half of the RBEM relative to weakly filtered 220 kV X-rays. Therefore, it can be concluded that for estimating an absorbed dose during RSO by the technique of biological dosimetry, in vitro and in vivo data for the same radiation quality are necessary.  相似文献   

15.
The tolerances of 20 Beauveria bassiana isolates derived from host insects worldwide to UV-B irradiation were assessed quantitatively in multi-dose bioassays. Conidial suspensions of the isolates smeared on glass slides were exposed to the gradient UV-B doses of 0.1–1.6 J cm−2 (D), which generated from 0.75 to 10.17 min irradiation of weighted 312-nm wavelength at 2.0–2.61 mW cm−2. Irradiated conidia were then incubated for 24 h at 25°C under saturated humidity. The ratio of germination at each dose over that in the blank control was defined as survival index (I s). For all isolates, the I s − D observations fit well with the survival model I s = 1/[1 + exp(a + bD)] (0.94 ≤ r 2 ≤ 0.99) generated widely spanned lethal doses of 0.154–0.928, 0.240–1.139, and 0.383–1.493 J cm−2 for their losses of 50%, 75%, and 95% viabilities, respectively. These were far below the solar UV-B dose of 2.439 J cm−2 measured in a sunny day during the summer. The large variation of UV-B tolerance among the isolates indicates a necessity to select UV-tolerant candidates for formulations applied to insect control during summer. The highly efficient bioassay method was developed to measure accurately the UV-B tolerances of fungal biocontrol agents as lethal doses.  相似文献   

16.
Most information on the dose–response of radiation-induced cancer is derived from data on the A-bomb survivors who were exposed to γ-rays and neutrons. Since, for radiation protection purposes, the dose span of main interest is between 0 and 1 Gy, the analysis of the A-bomb survivors is usually focused on this range. However, estimates of cancer risk for doses above 1 Gy are becoming more important for radiotherapy patients and for long-term manned missions in space research. Therefore in this work, emphasis is placed on doses relevant for radiotherapy with respect to radiation-induced solid cancer. The analysis of the A-bomb survivor’s data was extended by including two extra high-dose categories (4–6 Sv and 6–13 Sv) and by an attempted combination with cancer data on patients receiving radiotherapy for Hodgkin’s disease. In addition, since there are some recent indications for a high neutron dose contribution, the data were fitted separately for three different values for the relative biological effectiveness (RBE) of the neutrons (10, 35 and 100) and a variable RBE as a function of dose. The data were fitted using a linear, a linear-exponential and a plateau-dose–response relationship. Best agreement was found for the plateau model with a dose-varying RBE. It can be concluded that for doses above 1 Gy there is a tendency for a nonlinear dose–response curve. In addition, there is evidence of a neutron RBE greater than 10 for the A-bomb survivor data. Many problems and uncertainties are involved in combing these two datasets. However, since very little is currently known about the shape of dose–response relationships for radiation-induced cancer in the radiotherapy dose range, this approach could be regarded as a first attempt to acquire more information on this area. The work presented here also provides the first direct evidence that the bending over of the solid cancer excess risk dose response curve for the A-bomb survivors, generally observed above 2 Gy, is due to cell killing effects.  相似文献   

17.
Surface inoculation dose–response and time–response bioassays and detached fruit bioassays were conducted with a novel South African isolate of the Cryptophlebia leucotreta granulovirus (CrleGV-SA) against Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Noctuidae) neonate larvae. LC50 and LC90 values were estimated to be 4.095 × 103 and 1.185 × 105 OBs ml−1, respectively. LT50 and LT90 values were estimated to be 4 days 22 h and 7 days 8 h, respectively, categorising the virus as a fast or type 2 granulovirus. There was a conspicuous difference in behaviour between larvae on inoculated diet and untreated diet, resulting in a significant reduction in penetration of diet. Bioassays on detached Navel oranges revealed LC50 and LC90 values of 9.310 × 107 and 1.515 × 109 OBs ml−1, when using data on numbers of larvae per fruit rather than on numbers of infested fruit. Field trials will be conducted.  相似文献   

18.
Cell survival, induction of apoptosis, and micronucleus formation have been examined in non-transformed human amnion fluid fibroblast-like (AFFL) cells and in a human squameous cell carcinoma (SCL-II) cell line after exposure to the Auger electron emitter 65Zn and after external low-LET radiation. Cellular uptake and subcellular distribution of 65Zn2+ were studied in vitro and the absorbed radiation dose was calculated applying analytical dosimetry models. Auger electrons generated during decay of 65Zn induced a prominent decrease in cell survival and increased the levels of apoptotic as well as micronucleated cells when compared to external low-LET irradiation. Relative biological effectiveness has been determined for cell survival (RBE ~4), micronucleus formation (RBE ~2) and apoptosis induction (RBE ~5–8) in SCL-II cells and for micronucleus formation (RBE ~4–5) and apoptosis induction (RBE ~6–10) in AFFL cells, respectively. This demonstrates a general enhanced biological effectiveness of 65Zn in both investigated cell lines when compared to external low-LET radiation. The distribution pattern of intracellular Zn2+ was found to be non-uniform, showing enhanced amounts of Zn2+ in the perinuclear region and low amounts inside the cell nucleus, suggesting a major energy deposition close to the nuclear envelope.  相似文献   

19.
In particle tumor therapy including beam scanning at accelerators, the dose per voxel is delivered within about 100 ms. In contrast, the new technology of laser plasma acceleration will produce ultimately shorter particle packages that deliver the dose within a nanosecond. Here, possible differences for relative biological effectiveness in creating DNA double-strand breaks in pulsed or continuous irradiation mode are studied. HeLa cells were irradiated with 1 or 5 Gy of 20-MeV protons at the Munich tandem accelerator, either at continuous mode (100 ms), or applying a single pulse of 1-ns duration. Cells were fixed 1 h after 1-Gy irradiation and 24 h after 5-Gy irradiation, respectively. A dose–effect curve based on five doses of X-rays was taken as reference. The total number of phosphorylated histone H2AX (gamma-H2AX) foci per cell was determined using a custom-made software macro for gamma-H2AX foci counting. For 1 h after 1-Gy 20-MeV proton exposures, values for the relative biological effectiveness (RBE) of 0.97 ± 0.19 for pulsed and 1.13 ± 0.21 for continuous irradiations were obtained in the first experiment 1.13 ± 0.09 and 1.16 ± 0.09 in the second experiment. After 5 Gy and 24 h, RBE values of 0.99 ± 0.29 and 0.91 ± 0.23 were calculated, respectively. Based on the gamma-H2AX foci numbers obtained, no significant differences in RBE between pulsed and continuous proton irradiation in HeLa cells were detected. These results are well in line with our data on micronucleus induction in HeLa cells.  相似文献   

20.
Arabidopsis thaliana was exposed to low-dose chronic gamma irradiation during a full life cycle (seed to seed) and several biological responses were investigated. Applied dose rates were 2336, 367 and 81 μGy h?1. Following 24 days (inflorescence emergence), 34 days (~50% of flowers open) and 54 days (silice ripening) exposure, plants were harvested and monitored for biometric parameters, capacities of enzymes involved in the antioxidative defence mechanisms (SOD, APOD, GLUR, GPOD, SPOD, CAT, ME), glutathione and ascorbate pool, lipid peroxidation products, altered gene expression of selected genes encoding for antioxidative enzymes or reactive oxygen species production, and DNA integrity. Root fresh weight was significantly reduced after gamma exposure compared to the control at all stages monitored but no significant differences in root weight for the different dose rates applied was observed. Leaf and stem fresh weight were significantly reduced at the highest irradiation level after 54 days exposure only. Also total plant fresh was significantly lower at silice riping and this for the highest and medium dose rate applied. The dose rate estimated to result in a 10% reduction in growth (EDR-10) ranged between 60 and 80 μGy h?1. Germination of seeds from the gamma irradiated plants was not hampered. For several of the antioxidative defence enzymes studied, the enzyme capacity was generally stimulated towards flowering but generally no significant effect of dose rate on enzyme capacity was observed. Gene analysis revealed a significant transient and dose dependent change in expression of RBOHC indicating active reactive oxygen production induced by gamma irradiation. No effect of irradiation was observed on concentration or reduction state of the non-enzymatic antioxidants, ascorbate and glutathione. The level of lipid peroxidation products remained constant throughout the observation period and was not affected by dose rate. The comet assay did not reveal any effect of gamma dose rate on DNA integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号