首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
To test the immunogenicity of GPGRAFY-epitope-based candidate vaccines, a peptide with four repetitive GPGRAFY epitopes, V3-P1 [C-(GPGRAFY)4], and a peptide (PND) of the principal neutralizing domain (V3 loop: amino acid 301-328: C-TRPNNNTRKSIRIQRGPGRAFYTIGKI) on gp120 were synthesized and covalently coupled to a carrier protein BSA. Immunization of BALB/c mice and New Zealand White Rabbits with these conjugate vaccines engendered strong antibody responses against the PND (mouse serum titer by 1:12,800-25,600; rabbit serum titer by 1:6,400-12,800). Interestingly, the V3-P1-BSA conjugates and the PND-BSA conjugates could induce high levels of GPGRAFY-epitope-specific antibodies in the mice and rabbits (mouse serum titer by 1:25,600; rabbit serum titer by 1:12,800-25,600), while a recombinant gp160 subunit vaccine induced a low level of GPGRAFY-epitope-specific antibodies (serum titer by 1:400-1,600 in mice and rabbits). To confirm the above results, GPGRAFY-epitope-specific antibodies were isolated from rabbit sera induced by V3-P1-BSA, PND-BSA conjugates and rgp160 vaccine. In fact, 23-38 and 13-22 microg epitope-specific antibodies per milliliter serum were isolated from rabbit sera induced by V3-P1-BSA and PND-BSA conjugate, respectively, while 1.34 microg epitope-specific antibodies per milliliter serum were identified in rabbit serum induced by rgp160 vaccine. In the control group, only 0.069 microg proteins per milliliter serum were found in pooled pre-immune serum (normal serum). These results from mouse and rabbit experiments indicate that epitope and peptide vaccines both induce high levels of GPGRAFY-epitope-specific antibodies in comparison with rgp160 subunit vaccine, suggesting that epitope/peptide vaccines may be a new strategy to induce protective activity.  相似文献   

2.
Some neutralizing epitopes on HIV-1 envelope proteins were identified to induce antibodies which could effectively inhibit the infection of different strains in vitro. But only very low levels of these antibodies were determined in the HIV-1 infected individuals. To increase the levels of protective antibodies in vivo, we suggested multi-epitope vaccine as a new strategy to induce high level of neutralization antibodies with predefined multi-epitope specificity. A synthesized epitope peptide MP (CG-GPGRAFY-G-ELDKWA-G-RILAVERYLKD) containing three neutralizing epitopes (GPGRAFY, ELDKWA, RILAVERYLKD) was conjugated to carrier protein KLH, and then used for immunization in mouse together with aluminium adjuvant or Freund's adjuvant (FA). The candidate MP-KLH multi-epitope vaccine in aluminium adjuvant could induce antibody response very strongly to the epitope peptide C-(RILAVERYLKD-G)2 and the immunosuppressive peptide (P1) (LQARILAVERYLKDQQL) (antibody titer: 1:51200), strongly to the epitope peptide C-(ELDKWA-G)4 and the C-domain peptide (P2) (1:12800), and moderately to the epitope peptide C-(GPGRAFY)4 and the V3 loop peptide (1:1600). The immunoblotting analysis demonstrated that the antibodies in sera could recognize P1, P2, V3 loop peptides and rsgp41 (aa 539-684). These results are similar with that in the case of PI-BSA in FA, and suggest that the multi-epitope vaccine in aluminium could induce high levels of antibodies of predefined multi-epitope specificity, which provides experimental evidence for the new strategy to develop an effective neutralizing antibody-based multi-epitope vaccine against HIV-1.  相似文献   

3.
The high mutation rate of HIV-1 (human immunodeficiency virus-1) is a major obstacle to developing an effective vaccine. The mutation of ELDKWA-(aa669-674) to ELDEWA-epitope on HIV-1 gp41 caused the immune escape from neutralization by potent anti-HIV-1 human monoclonal antibody (mAb) 2F5. In this study, we suggested and evaluated a multi-epitope vaccine as a new strategy to develop HIV-1 vaccines. A glutathione S-transferase (GST) fusion protein (GST-K8E8) containing 8 copies of ELDKWA-and mutated ELDEWA-epitopes was constructed and used to immunize mice or rabbits. Analysis of the antisera (rAS3) induced by GST-K8E8 suggested that multi-epitope vaccine immunogen could raise antibodies in mice and rabbits against either the original ELDKWA-epitope or the mutated ELDEWA-epitope that resulted in immune escape. Briefly, ELDKWA-epitope-specific antibodies, directly purified from rAS3 by ELDKWA-epitope-peptide affinity chromatography, recognized either original gp41 protein (ELDKWA, rgp41K) or mutated gp41 (ELDEWA, rgp41E) in immunoblotting assay; in contrast, the existing ELDKWA-epitope antibodies recognized only rgp41K but not rgp41E, which were purified by ELDKWA-epitope-peptide affinity chromatography from rAS3 that were firstly completely pre-absorbed by ELDEWA-epitope-peptide affinity beads. And the same results were also observed when detecting the ELDEWA-epitope-specific antibodies in rAS3 by a means similar to the above. All the data presented here demonstrated that a high density multi-epitope vaccine could be an interesting strategy against HIV-1 mutation.  相似文献   

4.
The VP8 subunit protein of human rotavirus (HRV) plays an important role in viral infectivity and neutralization. Recombinant peptide antigens displaying the amino acid sequence M(1)ASLIYRQLL(10), a linear neutralization epitope on the VP8 protein, were constructed and examined for their ability to generate anti-peptide antibodies and HRV-neutralizing antibodies in BALB/c mice. Peptide antigen constructs were expressed in E. coli as fusion proteins with thioredoxin and a universal tetanus toxin T-cell epitope (P2), in order to enhance the anti-peptide immune response. The peptide antigen containing three tandem copies of the VP8 epitope induced significantly higher levels of anti-peptide antibody than only a single copy of the epitope, or the peptide co-administered with the carrier protein and T-cell epitope. Furthermore, the peptide antigen containing three copies of the peptide produced significantly higher virus-neutralization titres, higher than VP8, indicating that a peptide antigen displaying repeating copies of the amino acid region 1-10 of VP8 is a more potent inducer of HRV-neutralizing antibodies than VP8 alone, and may be useful for the production of specific neutralizing antibodies for passive immunotherapy of HRV infection.  相似文献   

5.
戊型肝炎病毒衣壳蛋白内包含一个强H-2d限制性Th表位P34。以该表位肽免疫BALB/c鼠,其脾细胞能够在体外识别重组戊型肝炎病毒衣壳蛋白,剔除实验表明应答细胞几乎完全是CD4 T细胞,证明P34表位肽能有效诱导产生特异性Th细胞。以P34肽初免小鼠,再以包含该表位的重组戊型肝炎病毒抗原(E2)免疫,结果表明,10μg、20μgE2免疫组在免疫后第1周即有部分小鼠产生抗体,到第3周所有小鼠均能够产生抗体;而对照肽P18初免的小鼠,以20μgE2加强免疫亦无法诱导小鼠产生抗体。这表明,Th表位肽P34初免诱导产生的Th细胞能够有效促进小鼠对携带该表位的载体蛋白的体液免疫应答。  相似文献   

6.
Most antibodies that broadly neutralize HIV-1 are highly somatically mutated in antibody clonal lineages that persist over time. Here, we describe the analysis of human antibodies induced during an HIV-1 vaccine trial (GSK PRO HIV-002) that used the clade B envelope (Env) gp120 of clone W6.1D (gp120W6.1D). Using dual-color antigen-specific sorting, we isolated Env-specific human monoclonal antibodies (MAbs) and studied the clonal persistence of antibodies in the setting of HIV-1 Env vaccination. We found evidence of VH somatic mutation induced by the vaccine but only to a modest level (3.8% ± 0.5%; range 0 to 8.2%). Analysis of 34 HIV-1-reactive MAbs recovered over four immunizations revealed evidence of both sequential recruitment of naïve B cells and restimulation of previously recruited memory B cells. These recombinant antibodies recapitulated the anti-HIV-1 activity of participant serum including pseudovirus neutralization and antibody-dependent cell-mediated cytotoxicity (ADCC). One antibody (3491) demonstrated a change in specificity following somatic mutation with binding of the inferred unmutated ancestor to a linear C2 peptide while the mutated antibody reacted only with a conformational epitope in gp120 Env. Thus, gp120W6.1D was strongly immunogenic but over four immunizations induced levels of affinity maturation below that of broadly neutralizing MAbs. Improved vaccination strategies will be needed to drive persistent stimulation of antibody clonal lineages to induce affinity maturation that results in highly mutated HIV-1 Env-reactive antibodies.  相似文献   

7.
Recent studies have demonstrated that the membrane-proximal external region(MPER)of human immunodeficiency virus 1(HIV-1)glycoprotein 41 contains a series of epitopes for human monoclonal antibodies,including 2F5,Z13e1,4E10,and10E8,which were isolated from HIV-1-infected individuals and show broad neutralizing activities.This suggests that MPER is a good target for the development of effective HIV-1 vaccines.However,many studies have shown that it is difficult to induce antibodies with similar broad neutralizing activities using MPER-based peptide antigens.Here,we report that 10E8-like neutralizing antibodies with effective anti-HIV-1 activity were readily induced using a precisely designed conformational immunogenic peptide containing the 10E8-specific epitope.This immunogenic peptide(designated T10HE)contains a 15-mer MPER-derived 10E8-specific epitope fused to T-helper-cell epitopes from tetanus toxin(tt),which showed a significantly stabilized-helix structure after a series of modifications,including substitution with an(S)--(2-pentenyl)alanine containing an olefin-bearing tether and ruthenium-catalyzed olefin metathesis,compared with the unmodified T10E peptide.The stabilized-helix structure of T10HE did not affect its capacity to bind the 10E8 antibody,as evaluated with an enzyme linked immunosorbent assay(ELISA)and surface plasmon resonance binding assay(SPR assay).The efficacies of the T10HE and T10E epitope vaccines were evaluated after a standard vaccination procedure in which the experimental mice were primed with either the T10HE or T10E immunogen and boosted with HIV-1 JRFL pseudoviruses.Higher titers of 10E8-like antibodies were induced by T10HE than that by T10E.More importantly,the antibodies induced by T10HE showed enhanced antiviral potency against HIV-1 strains with both X4 and R5 tropism and a greater degree of broad neutralizing activity than the antibodies induced by T10E.These results indicate that a 10E8-epitope-based structure-specific peptide immunogen can elicit neutralizing antibodies when used as a vaccine prime.  相似文献   

8.
The human monoclonal antibody 4E10 against the membrane-proximal external region (MPER) of HIV-1 gp41 demonstrates broad neutralizing activity across various strains, and makes its epitope an attractive target for HIV-1 vaccine development. Although the contiguous epitope of 4E10 has been identified, attempts to re-elicit 4E10-like antibodies have failed, possibly due to the lack of proper conformation of the 4E10 epitope. Here we used pIg-tail expression system to construct a panel of eukaryotic cell-surface expression plasmids encoding the extracellular domain of gp41 with deletion of fusion peptide and/or introduction of L568P mutation that may disrupt the gp41 six-helix bundle core conformation as DNA vaccines for immunization of mice. We found that these changes resulted in significant increase of the antigenicity and immunogenicity of 4E10 epitope. This information is thus useful for rational design of vaccines targeting the HIV-1 gp41 MPER.  相似文献   

9.
The HIV-1 envelope glycoproteins (Env) gp120 and gp41 mediate entry and are the targets for neutralizing antibodies. Within gp41, a continuous epitope defined by the broadly neutralizing antibody 2F5, is one of the few conserved sites accessible to antibodies on the functional HIV Env spike. Recently, as an initial attempt at structure-guided design, we transplanted the 2F5 epitope onto several non-HIV acceptor scaffold proteins that we termed epitope scaffolds (ES). As immunogens, these ES proteins elicited antibodies with exquisite binding specificity matching that of the 2F5 antibody. These novel 2F5 epitope scaffolds presented us with the opportunity to test heterologous prime:boost immunization strategies to selectively boost antibody responses against the engrafted gp41 2F5 epitope. Such strategies might be employed to target conserved but poorly immunogenic sites on the HIV-1 Env, and, more generally, other structurally defined pathogen targets. Here, we assessed ES prime:boosting by measuring epitope specific serum antibody titers by ELISA and B cell responses by ELISpot analysis using both free 2F5 peptide and an unrelated ES protein as probes. We found that the heterologous ES prime:boosting immunization regimen elicits cross-reactive humoral responses to the structurally constrained 2F5 epitope target, and that incorporating a promiscuous T cell helper epitope in the immunogens resulted in higher antibody titers against the 2F5 graft, but did not result in virus neutralization. Interestingly, two epitope scaffolds (ES1 and ES2), which did not elicit a detectable 2F5 epitope-specific response on their own, boosted such responses when primed with the ES5. Together, these results indicate that heterologous ES prime:boost immunization regimens effectively focus the humoral immune response on the structurally defined and immunogen-conserved HIV-1 2F5 epitope.  相似文献   

10.
A solid-phase 8-mer random combinatorial peptide library was used to generate a panel of mimotopes of an epitope recognized by a monoclonal antibody to the F protein of measles virus (MV). An inhibition immunoassay was used to show that these peptides were bound by the monoclonal antibody with different affinities. BALB/c mice were coimmunized with the individual mimotopes and a T-helper epitope peptide (from MV fusion protein), and the reactivity of the induced anti-mimotope antibodies with the corresponding peptides and with MV was determined. The affinities of the antibodies with the homologous peptides ranged from 8.9 x 10(5) to 4.4 x 10(7) liters/mol. However, only one of the anti-mimotope antibodies cross-reacted with MV in an enzyme-linked immunosorbent assay and inhibited MV plaque formation. Coimmunization of mice with this mimotope and the T-helper epitope peptide induced an antibody response which conferred protection against fatal encephalitis induced following challenge with MV and with the structurally related canine distemper virus. These results indicate that peptide libraries can be used to identify mimotopes of conformational epitopes and that appropriate immunization with these mimotopes can induce protective antibody responses.  相似文献   

11.
In a previous report we have shown that, in contrast to antibodies produced against native or fully deglycosylated human immunodeficiency virus type 1 (HIV-1) gp160 in rabbits, antibodies raised against desialylated HIV-1 gp160 also recognize gp140 from HIV-2 at high titers. Here, we characterize the fine specificity of these cross-reactive antibodies. Inhibition assays with a panel of synthetic peptides as competitors showed that cross-reactivity to gp140 was due to antibodies that were specific for the region encompassing HIV-1 gp41 immunodominant epitope, mimicked by peptide P39 (residues 583 to 609), the latter being able to totally inhibit the formation of complexes between radiolabeled HIV-2 gp140 and antibodies elicited by desialylated HIV-1 gp160. In addition, anti-desialylated gp160 antibodies retained on a P39 affinity column still bound HIV-2 gp140. Fine mapping has enabled us to localize the cross-reactive epitope within the N-terminal extremity of the gp41 immunodominant region. Interestingly, this cross-reactive antibody population did not recognize glycosylated or totally deglycosylated simian immunodeficiency virus gp140 despite an amino acid homology with HIV-1 within this region that is comparable to that of HIV-2. This cross-reactivity between HIV-1 and HIV-2 did not correlate with cross-neutralization. These results illustrate the influence of carbohydrate moieties on the specificity of the antibodies produced and clearly indicate that such procedures may be an efficient way to raise specific immune responses that are not type specific. Moreover, this cross-reactivity might explain the double-positive reactivity observed, in some human sera, against both HIV-1 and HIV-2 envelope antigens.  相似文献   

12.
A novel synthetic peptide immunogen targeting the human immunodeficiency virus type-1 (HIV-1) coreceptor CXCR4 was evaluated for its capacity to induce CXCR4-specific antibodies with anti-HIV-1 activity in BALB/c mice and cynomolgus monkeys. A cyclic closed-chain dodecapeptide mimicking the conformation-specific domain of CXCR4 (cDDX4) was prepared in which Gly-Asp, as the dipeptide forming a spacer arm, links the amino and carboxyl termini of the decapeptidyl linear chain (linear DDX4, Asn176 to Ile185) derived from the undecapeptidyl arch (UPA; Asn176 to Cys186) of extracellular loop 2 (ECL-2) in CXCR4. Immunization of BALB/c mice with cDDX4 conjugated with a multiple-antigen peptide (cDDX4-MAP) induced conformational epitope-specific antibodies, and monoclonal antibody IA2-F9 reacted with cDDX4, but not with linear DDX4, as determined by real-time biomolecular interaction analysis using surface plasmon resonance. The antibody also reacted with cells expressing CXCR4 but not with cells expressing the other HIV coreceptor, CCR5. Furthermore, the antibody inhibited the replication of HIV-1 X4 virus (using CXCR4), as shown by an infection assay using both MAGIC-5 cells and MT4 cells, but not that of HIV-1 R5 virus (using CCR5). The antibody weakly interfered with chemotaxis induced by stromal cell-derived factor-1 alpha in THP-1 cells or moderately inhibited the chemotaxis of Molt4#8 cells under the same conditions. In addition, immunization of cynomolgus monkeys also induced cDDX4-specific antibodies with anti-HIV activity. Taken together, these results indicate that cDDX4 conjugated with a multi-antigen peptide induces the conformational epitope-specific antibodies to the undecapeptidyl arch of CXCR4 may be a novel candidate immunogen for preventing disease progression in HIV-1-infected individuals.  相似文献   

13.
A component to the problem of inducing broad neutralizing HIV-1 gp41 membrane proximal external region (MPER) antibodies is the need to focus the antibody response to the transiently exposed MPER pre-hairpin intermediate neutralization epitope. Here we describe a HIV-1 envelope (Env) gp140 oligomer prime followed by MPER peptide-liposomes boost strategy for eliciting serum antibody responses in rhesus macaques that bind to a gp41 fusion intermediate protein. This Env-liposome immunization strategy induced antibodies to the 2F5 neutralizing epitope 664DKW residues, and these antibodies preferentially bound to a gp41 fusion intermediate construct as well as to MPER scaffolds stabilized in the 2F5-bound conformation. However, no serum lipid binding activity was observed nor was serum neutralizing activity for HIV-1 pseudoviruses present. Nonetheless, the Env-liposome prime-boost immunization strategy induced antibodies that recognized a gp41 fusion intermediate protein and was successful in focusing the antibody response to the desired epitope.  相似文献   

14.
The Human immunodeficiency virus type 1(HIV-1) gp41 membrane proximal external region(MPER) is targeted by broadly neutralizing antibodies(e.g. 2F5, 4E10, Z13 e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However,these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope(amino acids(aa) 662–667 in the MPER)but also several other residues(aa 652–655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.  相似文献   

15.
Immunization with chemically defined synthetic polymers, multiple Ag peptide (MAP) systems, containing T and B epitopes of the circumsporozoite protein of P. berghei induce high levels of circulating antibodies that are detectable several months after boosting. The anti-MAP secondary antibody response is characterized by an increase in the levels of circulating IgG and a concomitant decrease in the IgM levels. In vitro and in vivo experiments indicated that Th epitopes included in the MAP are recognized by T cells induced after immunization with the native protein and, also, that MAP-induced T cells can recognize the native protein. In addition to high levels of anti-B epitope antibodies, MAP immunization also induces antibodies against the T epitope. This anti-T epitope immune response does not affect the generation of the anti-B epitope antibodies. Immunization of different strains of mice revealed that the antibody response is consistent with the genetically restricted pattern of recognition of the T epitope. There are, however, significant differences in the levels of antibody responses observed among responder strains. The findings of this study indicate that MAP are potent immunogens capable of inducing immunologic memory and are, thus, good candidates for the development of subunit vaccines designed to induce high levels of circulating antibodies.  相似文献   

16.
Mader A  Kunert R 《PloS one》2012,7(6):e39063
The HIV-1 envelope protein harbors several conserved epitopes that are recognized by broadly neutralizing antibodies. One of these neutralizing sites, the MPER region of gp41, is targeted by one of the most potent and broadly neutralizing monoclonal antibody, 2F5. Different vaccination strategies and a lot of efforts have been undertaken to induce MPER neutralizing antibodies but little success has been achieved so far. We tried to consider the alternative anti-idiotypic vaccination approach for induction of 2F5-like antibodies. The previously developed and characterized anti-idiotypic antibody Ab2/3H6 was expressed as antibody fragment fusion protein with C-terminally attached immune-modulators and used for immunization of rabbits to induce antibodies specific for HIV-1. Only those rabbits immunized with immunogens fused with the immune-modulators developed HIV-1 specific antibodies. Anti-anti-idiotypic antibodies were affinity purified using a two-step affinity purification protocol which revealed that only little amount of the total rabbit IgG fraction contained HIV-1 specific antibodies. The characterization of the induced anti-anti-idiotypic antibodies showed specificity for the linear epitope of 2F5 GGGELDKWASL and the HIV-1 envelope protein gp140. Despite specificity for the linear epitope and the truncated HIV-1 envelope protein these antibodies were not able to exhibit virus neutralization activities. These results suggest that Ab2/3H6 alone might not be suitable as a vaccine.  相似文献   

17.
Using synthetic peptides, we characterized the B-lymphocyte (antibody) and T-lymphocyte (proliferation) responses to an immunodominant epitope of human immunodeficiency virus type 1 (HIV-1) located near the amino-terminal end of the transmembrane glycoprotein (env amino acids 598 to 609). Both immunoglobulin M (IgM) and IgG antibodies against this epitope appeared early after primary infection with HIV-1. In an animal model, the IgG response to a synthetic peptide derived from this sequence was T-helper-cell dependent, whereas the IgM response was T-cell independent. In addition, antibody generated by immunization with this peptide had HIV-1-neutralizing activity. Greater than 99% (201 of 203) of patients infected with HIV-1 generated antibody to this peptide in vivo; however, only 24% (7 of 29) had T cells that proliferated in response to this peptide in vitro. These observations suggest that different HIV-1 gp41 epitopes elicit B-cell and T-cell immune responses.  相似文献   

18.
Analysis of the subtilisin-digested, two-chain form of human growth hormone (hGH) and its constituent polypeptide fragments has been aided by the use of monoclonal antibodies which bind specifically to four distinct epitopes on the native hormone. Using the SDS-polyacrylamide immunoblotting technique, it was shown that one epitope (shared with human chorionic somatomammotropin) detected by EB1 (or EB3) antibody was expressed to a similar extent by both the N-terminal (15 K) and C-terminal (7 K) polypeptides. This epitope is unique in that it represents a repeating determinant within the single chain structure of the hormone. Another three epitopes detected by monoclonal antibodies QA68/NA27, NA71 or NA39/EB2 were absent from the 7-K fragment but were expressed on the 15-K fragment to a similar extent to that on unmodified growth hormone. Binding of NA71 antibody was demonstrated only by radioimmunoassay since this, presumably conformational epitope could not be detected by immunoblotting. The functional importance of the 15-K peptide was demonstrated by its ability to bind specifically to hormone receptors on IM9 human lymphoblastoid cells and by its retention of mitogenicity for the NB2 rat lymphoma cell line. However, all tested monoclonal antibodies inhibited the binding of [125I]15-K to IM9 cell receptors by either steric hindrance or by an allosteric mechanism and therefore could not be further related topographically to the receptor-binding moiety of hGH.  相似文献   

19.
BACKGROUND: The protein 0.5beta is a potent strain-specific human immunodeficiency virus type 1 (HIV-1) neutralizing antibody raised against the entire envelope glycoprotein (gp120) of the HIV-1(IIIB) strain. The epitope recognized by 0.5beta is located within the third hypervariable region (V3) of gp120. Recently, several HIV-1 V3 residues involved in co-receptor utilization and selection were identified. RESULTS: Virtually complete sidechain assignment of the variable fragment (Fv) of 0.5beta in complex with the V3(IIIB) peptide P1053 (RKSIRIQRGPGRAFVTIG, in single-letter amino acid code) was accomplished and the combining site structure of 0.5beta Fv complexed with P1053 was solved using multidimensional nuclear magnetic resonance (NMR). Five of the six complementarity determining regions (CDRs) of the antibody adopt standard canonical conformations, whereas CDR3 of the heavy chain assumes an unexpected fold. The epitope recognized by 0.5beta encompasses 14 of the 18 P1053 residues. The bound peptide assumes a beta-hairpin conformation with a QRGPGR loop located at the very center of the binding pocket. The Fv and peptide surface areas buried upon binding are 601 A and 743 A(2), respectively, in the 0.5beta Fv-P1053 mean structure. The surface of P1053 interacting with the antibody is more extensive and the V3 peptide orientation in the binding site is significantly different compared with those derived from the crystal structures of a V3 peptide of the HIV-1 MN strain (V3(MN)) complexed to three different anti-peptide antibodies. CONCLUSIONS: The surface of P1053 that is in contact with the anti-protein antibody 0.5beta is likely to correspond to a solvent-exposed region in the native gp120 molecule. Some residues of this region of gp120 are involved in co-receptor binding, and in discrimination between different chemokine receptors utilized by the protein. Several highly variable residues in the V3 loop limit the specificity of the 0.5beta antibody, helping the virus to escape from the immune system. The highly conserved GPG sequence might have a role in maintaining the beta-hairpin conformation of the V3 loop despite insertions, deletions and mutations in the flanking regions.  相似文献   

20.
Recent studies have shown that natural infection by HIV-2 leads to the elicitation of high titers of broadly neutralizing antibodies (NAbs) against primary HIV-2 strains (T. I. de Silva, et al., J. Virol. 86:930–946, 2012; R. Kong, et al., J. Virol. 86:947–960, 2012; G. Ozkaya Sahin, et al., J. Virol. 86:961–971, 2012). Here, we describe the envelope (Env) binding and neutralization properties of 15 anti-HIV-2 human monoclonal antibodies (MAbs), 14 of which were newly generated from 9 chronically infected subjects. All 15 MAbs bound specifically to HIV-2 gp120 monomers and neutralized heterologous primary virus strains HIV-27312A and HIV-2ST. Ten of 15 MAbs neutralized a third heterologous primary virus strain, HIV-2UC1. The median 50% inhibitory concentrations (IC50s) for these MAbs were surprisingly low, ranging from 0.007 to 0.028 μg/ml. Competitive Env binding studies revealed three MAb competition groups: CG-I, CG-II, and CG-III. Using peptide scanning, site-directed mutagenesis, chimeric Env constructions, and single-cycle virus neutralization assays, we mapped the epitope of CG-I antibodies to a linear region in variable loop 3 (V3), the epitope of CG-II antibodies to a conformational region centered on the carboxy terminus of V4, and the epitope(s) of CG-III antibodies to conformational regions associated with CD4- and coreceptor-binding sites. HIV-2 Env is thus highly immunogenic in vivo and elicits antibodies having diverse epitope specificities, high potency, and wide breadth. In contrast to the HIV-1 Env trimer, which is generally well shielded from antibody binding and neutralization, HIV-2 is surprisingly vulnerable to broadly reactive NAbs. The availability of 15 human MAbs targeting diverse HIV-2 Env epitopes can facilitate comparative studies of HIV/SIV Env structure, function, antigenicity, and immunogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号