首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triphosphate tunnel metalloenzymes (TTMs) are a superfamily of phosphotransferases with a distinctive active site located within an eight-stranded beta barrel. The best understood family members are the eukaryal RNA triphosphatases, which catalyze the initial step in mRNA capping. The RNA triphosphatases characteristically hydrolyze nucleoside 5'-triphosphates in the presence of manganese and are inept at cleaving inorganic tripolyphosphate. We recently identified a TTM protein from the bacterium Clostridium thermocellum (CthTTM) with the opposite substrate preference. Here we report that CthTTM catalyzes hydrolysis of guanosine 5'-tetraphosphate to yield GTP and P(i) (K(m) = 70 microm, k(cat) = 170 s(-1)) much more effectively than it converts GTP to GDP and P(i) (K(m) = 70 microm, k(cat) = 0.3 s(-1)), implying that a nucleoside interferes when positioned too close to the tunnel entrance. CthTTM is capable of quantitatively cleaving diadenosine hexaphosphate but has feeble activity with shorter derivatives diadenosine tetraphosphate and diadenosine pentaphosphate. We propose that the tunnel opens to accommodate the dumbbell-shaped diadenosine hexaphosphate and then closes around it to perform catalysis. We find that CthTTM can exhaustively hydrolyze a long-chain inorganic polyphosphate, a molecule that plays important roles in bacterial physiology. CthTTM differs from other known polyphosphatases in that it yields a approximately 2:1 mixture of P(i) and PP(i) end products. Bacterial/archaeal TTMs have a C-terminal helix located near the tunnel entrance. Deletion of this helix from CthTTM exerts pleiotropic effects. (i) It suppresses hydrolysis of guanosine 5'-tetraphosphate and inorganic PPP(i); (ii) it stimulates NTP hydrolysis; and (iii) it biases the outcome of the long-chain polyphosphatase reaction more strongly in favor of P(i) production. We discuss models for substrate binding in the triphosphate tunnel.  相似文献   

2.
RNA triphosphatase catalyzes the first step in mRNA capping. The RNA triphosphatases of fungi and protozoa are structurally and mechanistically unrelated to the analogous mammalian enzyme, a situation that recommends RNA triphosphatase as an anti-infective target. Fungal and protozoan RNA triphosphatases belong to a family of metal-dependent phosphohydrolases exemplified by yeast Cet1. The Cet1 active site is unusually complex and located within a topologically closed hydrophilic beta-barrel (the triphosphate tunnel). Here we probe the active site of Plasmodium falciparum RNA triphosphatase by targeted mutagenesis and thereby identify eight residues essential for catalysis. The functional data engender an improved structural alignment in which the Plasmodium counterparts of the Cet1 tunnel strands and active-site functional groups are located with confidence. We gain insight into the evolution of the Cet1-like triphosphatase family by noting that the heretofore unique tertiary structure and active site of Cet1 are recapitulated in recently deposited structures of proteins from Pyrococcus (PBD 1YEM) and Vibrio (PDB 2ACA). The latter proteins exemplify a CYTH domain found in CyaB-like adenylate cyclases and mammalian thiamine triphosphatase. We conclude that the tunnel fold first described for Cet1 is the prototype of a larger enzyme superfamily that includes the CYTH branch. This superfamily, which we name "triphosphate tunnel metalloenzyme," is distributed widely among bacterial, archaeal, and eukaryal taxa. It is now clear that Cet1-like RNA triphosphatases did not arise de novo in unicellular eukarya in tandem with the emergence of caps as the defining feature of eukaryotic mRNA. They likely evolved by incremental changes in an ancestral tunnel enzyme that conferred specificity for RNA 5'-end processing.  相似文献   

3.
CYTH proteins make up a large superfamily that is conserved in all three domains of life. These enzymes have a triphosphate tunnel metalloenzyme (TTM) fold, which typically results in phosphatase functions, e.g., RNA triphosphatase, inorganic polyphosphatase, or thiamine triphosphatase. Some CYTH orthologs cyclize nucleotide triphosphates to 3′,5′-cyclic nucleotides. So far, archaeal CYTH proteins have been annotated as adenylyl cyclases, although experimental evidence to support these annotations is lacking. To address this gap, we characterized a CYTH ortholog, SaTTM, from the crenarchaeote Sulfolobus acidocaldarius. Our in silico studies derived ten major subclasses within the CYTH family implying a close relationship between these archaeal CYTH enzymes and class IV adenylyl cyclases. However, initial biochemical characterization reveals inability of SaTTM to produce any cyclic nucleotides. Instead, our structural and functional analyses show a classical TTM behavior, i.e., triphosphatase activity, where pyrophosphate causes product inhibition. The Ca2+-inhibited Michaelis complex indicates a two-metal-ion reaction mechanism analogous to other TTMs. Cocrystal structures of SaTTM further reveal conformational dynamics in SaTTM that suggest feedback inhibition in TTMs due to tunnel closure in the product state. These structural insights combined with further sequence similarity network–based in silico analyses provide a firm molecular basis for distinguishing CYTH orthologs with phosphatase activities from class IV adenylyl cyclases.  相似文献   

4.
Chlorella virus RNA triphosphatase (cvRtp1) is the smallest member of a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, poxviruses, and baculoviruses. The primary structure of cvRtp1 is more similar to that of the yeast RNA triphosphatase Cet1 than it is to the RNA triphosphatases of other DNA viruses. To evaluate the higher order structural similarities between cvRtp1 and the fungal enzymes, we performed an alanine scan of individual residues of cvRtp1 that were predicted, on the basis of the crystal structure of Cet1, to be located at or near the active site. Twelve residues (Glu(24), Glu(26), Asp(64), Arg(76), Lys(90), Glu(112), Arg(127), Lys(129), Arg(131), Asp(142), Glu(163), and Glu(165)) were deemed essential for catalysis by cvRtp1, insofar as their replacement by alanine reduced phosphohydrolase activity to <5% of the wild-type value. Structure-activity relationships were elucidated by introducing conservative substitutions at the essential positions. The mutational results suggest that the active site of cvRtp1 is likely to adopt a tunnel fold like that of Cet1 and that a similar constellation of side chains within the tunnel is responsible for metal binding and reaction chemistry. Nonetheless, there are several discordant mutational effects in cvRtp1 versus Cet1, which suggest that different members of the phosphohydrolase family vary in their reliance on certain residues within the active site tunnel. We found that tripolyphosphate and pyrophosphate were potent competitive inhibitors of cvRtp1 (K(i) = 0.6 microm tripolyphosphate and 2.4 microm pyrophosphate, respectively), whereas phosphate had little effect. cvRtp1 displayed a weak intrinsic tripolyphosphatase activity (3% of its ATPase activity) but was unable to hydrolyze pyrophosphate.  相似文献   

5.
The RNA triphosphatase (RTPase) components of the mRNA capping apparatus are a bellwether of eukaryal taxonomy. Fungal and protozoal RTPases belong to the triphosphate tunnel metalloenzyme (TTM) family, exemplified by yeast Cet1. Several large DNA viruses encode metal-dependent RTPases unrelated to the cysteinyl-phosphatase RTPases of their metazoan host organisms. The origins of DNA virus RTPases are unclear because they are structurally uncharacterized. Mimivirus, a giant virus of amoeba, resembles poxviruses in having a trifunctional capping enzyme composed of a metal-dependent RTPase module fused to guanylyltransferase (GTase) and guanine-N7 methyltransferase domains. The crystal structure of mimivirus RTPase reveals a minimized tunnel fold and an active site strikingly similar to that of Cet1. Unlike homodimeric fungal RTPases, mimivirus RTPase is a monomer. The mimivirus TTM-type RTPase-GTase fusion resembles the capping enzymes of amoebae, providing evidence that the ancestral large DNA virus acquired its capping enzyme from a unicellular host.  相似文献   

6.
Thiamine triphosphate (ThTP) is found at low concentrations in most animal tissues and it may act as a phosphate donor for the phosphorylation of proteins, suggesting a potential role in cell signaling. Two mechanisms have been proposed for the enzymatic synthesis of ThTP. A thiamine diphosphate (ThDP) kinase (ThDP+ATP if ThTP+ADP) has been purified from brewer's yeast and shown to exist in rat liver. However, other data suggest that, at least in skeletal muscle, adenylate kinase 1 (AK1) is responsible for ThTP synthesis. In this study, we show that AK1 knockout mice have normal ThTP levels in skeletal muscle, heart, brain, liver and kidney, demonstrating that AK1 is not responsible for ThTP synthesis in those tissues. We predict that the high ThTP content of particular tissues like the Electrophorus electricus electric organ, or pig and chicken skeletal muscle is more tightly correlated with high ThDP kinase activity or low soluble ThTPase activity than with non-stringent substrate specificity and high activity of adenylate kinase.  相似文献   

7.
The periodate-oxidized analog of ATP, 2',3'-dialATP, competitively inhibited bovine brain and rat liver adenylate cyclase. The apparent Ki for inhibition of brain adenylate cyclase by 2',3'-dialATP was 196 microM in the presence of Mg2+ and 37 microM in the presence of Mn2+. The Ki values for inhibition of rat liver adenylate cyclase by 2',3'-dialATP were 48 and 30 microM in the presence of Mg2+; and Mn2+, respectively. Adenylate cyclase activity was irreversibly inactivated by 2'3'-dialATP in the presence of NaCNBH3 and the kinetics for loss in enzyme activity were pseudo-first order. Both ATP and Tris protected adenylate cyclase from irreversible inhibition by 2',3'-dialATP and NaCNBH3. It is proposed that 2',3'-dialATP forms a Schiff's base with an amino group at the active site of the enzyme and that Na-CNBH3 reduction of this Schiff's base causes irreversible modification of the catalytic subunit. The Km for 2',3'-dialATP inactivation, the maximal rate constant of inactivation, and protection of the enzyme by ATP were not affected by the presence or absence of free Mg2+. These data indicate that a divalent cation is not required for binding of 2',3'-dialATP to the active site of adenylate cyclase.  相似文献   

8.
Trypanosoma brucei RNA triphosphatase TbCet1 is a 252-amino acid polypeptide that catalyzes the first step in mRNA cap formation. By performing an alanine scan of TbCet1, we identified six amino acids that are essential for triphosphatase activity (Glu-52, Arg-127, Glu-168, Arg-186, Glu-216, and Glu-218). These results consolidate the proposal that protozoan, fungal, and Chlorella virus RNA triphosphatases belong to a single family of metal-dependent NTP phosphohydrolases with a unique tunnel active site composed of eight beta strands. Limited proteolysis of TbCet1 suggests that the hydrophilic N terminus is surface-exposed, whereas the catalytic core domain is tightly folded with the exception of a protease-sensitive loop (76WKGRRARKT84) between two of the putative tunnel strands. The catalytic domain of TbCet1 is extraordinarily thermostable. It remains active after heating for 2 h at 75 degrees C. Analysis by zonal velocity sedimentation indicates that TbCet1 is a monomeric enzyme, unlike fungal RNA triphosphatases, which are homodimers. We show that tripolyphosphate is a potent competitive inhibitor of TbCet1 (Ki 1.4 microm) that binds more avidly to the active site than the ATP substrate (Km 25 microm). We present evidence of synergistic activation of the TbCet1 triphosphatase by manganese and magnesium, consistent with a two-metal mechanism of catalysis. Our findings provide new insight to the similarities (in active site tertiary structure and catalytic mechanism) and differences (in quaternary structure and thermal stability) among the different branches of the tunnel enzyme family.  相似文献   

9.
Triphosphate tunnel metalloenzymes (TTMs) are present in all kingdoms of life and catalyze diverse enzymatic reactions such as mRNA capping, the cyclization of adenosine triphosphate, the hydrolysis of thiamine triphosphate, and the synthesis and breakdown of inorganic polyphosphates. TTMs have an unusual tunnel domain fold that harbors substrate- and metal co-factor binding sites. It is presently poorly understood how TTMs specifically sense different triphosphate-containing substrates and how catalysis occurs in the tunnel center. Here we describe substrate-bound structures of inorganic polyphosphatases from Arabidopsis and Escherichia coli, which reveal an unorthodox yet conserved mode of triphosphate and metal co-factor binding. We identify two metal binding sites in these enzymes, with one co-factor involved in substrate coordination and the other in catalysis. Structural comparisons with a substrate- and product-bound mammalian thiamine triphosphatase and with previously reported structures of mRNA capping enzymes, adenylate cyclases, and polyphosphate polymerases suggest that directionality of substrate binding defines TTM catalytic activity. Our work provides insight into the evolution and functional diversification of an ancient enzyme family.  相似文献   

10.
The CYTH superfamily of proteins is named after its two founding members, the CyaB adenylyl cyclase from Aeromonas hydrophila and the human 25-kDa thiamine triphosphatase. Because these proteins often form a closed β-barrel, they are also referred to as triphosphate tunnel metalloenzymes (TTM). Functionally, they are characterized by their ability to bind triphosphorylated substrates and divalent metal ions. These proteins exist in most organisms and catalyze different reactions depending on their origin. Here we investigate structural and catalytic properties of the recombinant TTM protein from Nitrosomonas europaea (NeuTTM), a 19-kDa protein. Crystallographic data show that it crystallizes as a dimer and that, in contrast to other TTM proteins, it has an open β-barrel structure. We demonstrate that NeuTTM is a highly specific inorganic triphosphatase, hydrolyzing tripolyphosphate (PPP(i)) with high catalytic efficiency in the presence of Mg(2+). These data are supported by native mass spectrometry analysis showing that the enzyme binds PPP(i) (and Mg-PPP(i)) with high affinity (K(d) < 1.5 μm), whereas it has a low affinity for ATP or thiamine triphosphate. In contrast to Aeromonas and Yersinia CyaB proteins, NeuTTM has no adenylyl cyclase activity, but it shares several properties with other enzymes of the CYTH superfamily, e.g. heat stability, alkaline pH optimum, and inhibition by Ca(2+) and Zn(2+) ions. We suggest a catalytic mechanism involving a catalytic dyad formed by Lys-52 and Tyr-28. The present data provide the first characterization of a new type of phosphohydrolase (unrelated to pyrophosphatases or exopolyphosphatases), able to hydrolyze inorganic triphosphate with high specificity.  相似文献   

11.
In cellular systems provided with activatory (Ra-site) receptors for adenosine, such as rat cerebral microvessels and rat liver plasma membranes, the adenosine-receptor antagonist 8-phenyltheophylline (10 microM) significantly decreased adenylate cyclase activity if ATP was the substrate and only if GTP was present. With dATP as substrate, adenylate cyclase activities in both preparations remained unaffected by 8-phenyltheophylline. In rat cerebral-cortical membranes, with inhibitory (Ri-site) receptors for adenosine, 8-phenyltheophylline significantly enhanced adenylate cyclase activity only in the presence of GTP and if ATP was the substrate. In rat cardiac ventricular membranes, which are devoid of any adenylate cyclase-coupled adenosine receptor, the methylxanthine had no GTP-dependent effect, irrespective of the substrate used. All assay systems contained sufficiently high amounts of adenosine deaminase (2.5 units/ml), since no endogenous adenosine, formed from ATP, was found chromatographically. In order to demonstrate a direct influence of phosphorylated adenosine derivatives on adenylate cyclase activity, we investigated AMP in a dATP assay system. AMP was verified chromatographically to remain reasonably stable under the adenylate cyclase assay conditions. In the microvessels, AMP increased enzyme activity in the range 0.03-1.0 mM, an effect competitively antagonized by 8-phenyltheophylline. In the cortical membranes, 0.1 mM-AMP inhibited adenylate cyclase, which was partially reversed by the methylxanthine. The presence of GTP was again necessary for all observations. In the ventricular membranes, AMP had no effect. Since the efficacy of adenosine-receptor agonists and, probably, that of other hormones on adenylate cyclase activity can be more efficiently measured with dATP as the enzyme substrate, this nucleotide seems preferable for adenylate cyclase measurements in systems susceptible to modulation by adenosine.  相似文献   

12.
An attempt was made to purify a porcine skeletal muscle enzyme catalyzing the formation of thiamin triphosphate (TTP) from thiamin diphosphate (TDP), requiring ATP, Mg2+ and a cofactor (creatine). As the purification proceeded, the reaction requirements for ATP and creatine were lost and then a requirement for ADP was manifested. The activity responsible for TTP synthesis from TDP, ADP, and Mg2+ was found to be copurified with adenylate kinase [EC 2.7.4.3] activity, and was finally purified to a single band on SDS-PAGE. Antiserum obtained against the purified enzyme preparation inhibited both adenylate kinase activity and the TTP-synthesizing activity to exactly the same extent. These results indicate that adenylate kinase catalyzes TTP formation from TDP in vitro.  相似文献   

13.
Differences in expression profiles, substrate specificities, kinetic properties and subcellular localization among the AK (adenylate kinase) isoenzymes have been shown to be important for maintaining a proper adenine nucleotide composition for many different cell functions. In the present study, human AK7 was characterized and its substrate specificity, kinetic properties and subcellular localization determined. In addition, a novel member of the human AK family, with two functional domains, was identified and characterized and assigned the name AK8. AK8 is the second known human AK with two complete and active AK domains within its polypeptide chain, a feature that has previously been shown for AK5. The full-length AK8, as well as its two domains AK8p1 and AK8p2, all showed similar AK enzyme activity. AK7, full-length AK8, AK8p1 and AK8p2 phosphorylated AMP, CMP, dAMP and dCMP with ATP as the phosphate donor, and also AMP, CMP and dCMP with GTP as the phosphate donor. Both AK7 and full-length AK8 showed highest affinity for AMP with ATP as the phosphate donor, and proved to be more efficient in AMP phosphorylation as compared with the major cytosolic isoform AK1. Expression of the proteins fused with green fluorescent protein demonstrated a cytosolic localization for both AK7 and AK8.  相似文献   

14.
Class I adenylate cyclases are found in gamma- and delta-proteobacteria. They play central roles in processes such as catabolite repression in Escherichia coli or development of full virulence in pathogens such as Yersinia enterocolitica and Vibrio vulnificus. The catalytic domain (residues 2-446) of the adenylate cyclase of E. coli was overexpressed and purified. It displayed a V(max) of 665 nmol of cAMP x mg(-1) x min(-1) and a K(m) of 270 microM. Titration of the metal cofactor Mg(2+) against the substrate ATP showed a requirement for free metal ions in addition to the MgATP complex, suggesting a two-metal-ion mechanism as is known for class II and class III adenylate cyclases. Twelve residues which are essential for catalysis were identified by mutagenesis of a total of 20 polar residues conserved in all class I adenylate cyclases. Five essential residues (Ser(103), Ser(113), Asp(114), Asp(116) and Trp(118)) were part of a region which is found in all members of the large DNA polymerase beta-like nucleotidyltransferase superfamily. Alignment of the E. coli adenylate cyclase with the crystal structure of a distant member of the superfamily, archaeal tRNA CCA-adding enzyme, suggested that Asp(114) and Asp(116) are the metal-cofactor-ion-binding residues. The S103A mutant had a 17-fold higher K(m) than wild-type, demonstrating its important role in substrate binding. In comparison with the tRNA CCA-adding enzyme, Ser(103) of the E. coli adenylate cyclase apparently binds the gamma-phosphate group of ATP. Consistent with this function, the S103A mutation caused a marked reduction of discrimination between ATP- and ADP- or AMP-derived inhibitors.  相似文献   

15.
Adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3) from the mantle muscle of the squid, Loligo pealeii, was purified over 170-fold to homogeneity as judged by polyacrylamide and starch gel electrophoresis. The tissue contains a single isozyme of adenylate kinase, the enzyme from cytoplasmic and mitochondrial compartments (90 and 10% of total activity, respectively) being identical in physical and kinetic properties. Molecular weight was found to be 27,000 +/- 400. The enzyme shows a pH optimum of 8.2 in the forward (APD utilizing) and 7.4 in the reverse direction. Michaelis constants for ADP, ATP, and AMP are 0.70, 0.13, and 0.15 mM, respectively, with optimal Mg2+:adenylate ratios being 1:2 for ADP and 1:1 for ATP. A comparison of mass action ratios with the equilibrium constant indicated that squid adenylate kinase is held out of equilibrium in resting, but not active, muscle. A search for metabolic modulators of adenylate kinase revealed that NADH (Ki of 0.1 mM) was the only modulator which exerted a significant effect within its in vivo concentration range. The data presented indicate that NADH inhibition is the factor maintaining adenylate kinase in a nonequilibrium state in resting muscle and that release of this inhibition can serve to integrate adenylate kinase into the known scheme of intermediary metabolism in this tissue. A sharp drop in NADH levels at the onset on muscular work co-ordinates that activation of aerobic metabolism in this tissue and allows adenylate kinase to return to equilibrium function. At equilibrium, the enzyme can function to ampligy the concentration of AMP, a potent activator and deinhibitor of key glycolytic and Krebs cycle enzymes. The effect of modulators of adenylate kinase in preventing denaturation by heat or proteolysis revealed that NADH and substrates induced conformational changes in the enzyme which rendered it less susceptible to denaturation. The conformation state induced by NADH differed from that induced by substrate.  相似文献   

16.
Liu A  Zhang H 《Biochemistry》2006,45(35):10407-10411
Decarboxylases typically utilize an organic cofactor or a transition metal coupled with dioxygen to activate their substrates. The recent characterization of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD) has revealed that this enzyme adopts a TIM-barrel (beta/alpha)(8) fold and employs a mononuclear transition metal center to decarboxylate the substrate in an oxidant-independent fashion. Thus, ACMSD represents a type of decarboxylation reaction that has been so far uncharacterized in biological systems. Several close homologues of ACMSD were analyzed, including isoorotate decarboxylase (IDCase), 5-carboxyvanillic acid decarboxylase (5-CVD), gamma-resorcylate decarboxylase (gamma-RSD), and 4-oxalomesaconate hydratase (OMAH). These enzymes are involved in the catabolism of tryptophan and vanillate, the biodegradation of hydroxylbenzoates, and the thymidine salvage pathways in certain organisms. They possess the signature sequence motifs of the amidohydrolase superfamily and likely share the same structural and mechanistic characteristics as that of ACMSD. Analysis of the sequence conservation and evolutionary relationship of ACMSD-related proteins suggests an emerging ACMSD protein family that includes ACMSD and ACMSD-like decarboxylases and hydratases with diverse substrate specificities, many of which are poorly understood in regard to their functions and mechanisms. Progress in the biochemical and structural characterization of ACMSD not only sheds light on the active site of this protein family but also promises the elucidation of the detailed catalytic mechanism of these novel transition metal-dependent nonoxidative decarboxylation reactions.  相似文献   

17.
Site-directed mutagenesis of stable adenosine triphosphate synthase   总被引:3,自引:0,他引:3  
Evidence was obtained that four ionizable residues in the alpha and beta subunits of thermophilic ATP synthase (TF0F1), corresponding to Lys-21 and Asp-119 in the MgATP binding segments of adenylate kinase, are essential for the normal catalytic activity. TF0F1 was used because it is the only ATP synthase whose alpha-, beta- and gamma-subunits can be reassembled into an active complex in the absence of both ATP and Mg. Lys-164 and Asp-252 of its beta-subunit were modified to isoleucine and asparagine, respectively, by site-directed mutagenesis using a multifunctional plasmid, and these genes were over-expressed in Escherichia coli. The resulting beta I164 and beta N252 subunits were both noncatalytic after re-assembly into the alpha beta gamma-complex, even though both subunits bound significant amounts of ADP. When Lys-175 and Asp-261 of the alpha-subunit were similarly replaced by isoleucine and asparagine, respectively, the resulting alpha I175 subunit reassembled weakly into an oligomer, while the alpha N261 subunit showed an increased dissociation constant for ADP and was reconstituted into an alpha beta gamma-complex that showed no inter-subunit cooperativity.  相似文献   

18.
K.B. Seamon  J.W. Daly 《Life sciences》1982,30(17):1457-1464
Calcium stimulates adenylate cyclase activity in rat cerebral cortical membranes with either ATP or AppNHp as substrate. In contrast, isoproterenol stimulates the cerebral cortical enzyme with ATP as substrate but not with AppNHp as substrate unless exogenous GTP is added. In rat striatal membranes, calcium or dopamine stimulate adenylate cyclase activity with ATP as substrate, but not with AppNHp as substrate. GTP restores the dopamine but not the calcium response. The inhibitory guanine nucleotide GDP-βS antagonizes dopamine and GppNHp stimulation of the brain adenylate cyclases, but not stimulation by calcium of either rat cerebral cortical or striatal enzymes. Results indicate that GTP is not requisite to calcium-calmodulin activation of adenylate cyclases in brain membranes. In addition, calcium-calmodulin cannot activate striatal adenylate cyclases with a nonphosphorylating nucleotide, AppNHp, as substrate.  相似文献   

19.
Effect of GTP on adenylate cyclase of liver plasma membrane was examined using ATP which was extensively purified by DEAE-cellulose column chromatography. In the incubation containing 2mM purified ATP as substrate, GTP enhanced basal and glucagon- or fluoride-stimulated activities. When the unpurified ATP at 2mM was used, all the activities were high and the stimulatory effect of GTP was not detected. The substance(s) which was recovered from a small but significant peak on DEAE-cellulose column was equivalent to 10–100μM GTP in stimulating adenylate cyclase. These results indicate that, if highly purified ATP is used as substrate, GTP can enhance adenylate cyclase activity in the presence of millimolar concentration of ATP and that GTP enhances not only the glucagon-stimulated adenylate cyclase but also the basal as well as fluoride-stimulated adenylate cyclase activities.  相似文献   

20.
The adenylate cyclase of mammalian spermatozoa shares some of the properties of the isolated catalytic component from somatic cell adenylate cyclases. One of these properties is the large apparent stimulation by Mn2+. We have used the direct linear plot according to Eisenthal and Cornish-Bowden to explore whether this apparent stimulation is due to direct stimulation by Mn2+ or due to complexation of free ATP, a postulated inhibitor of cyclase activity. We have observed the activity of the particulate adenylate cyclase from bovine caudal epididymal spermatozoa as a function of calculated equilibrium values for the concentrations of Mn2+, free ATP, and the enzyme's substrate, the manganese-ATP complex. Direct linear plots for activity and substrate concentration over the apparent inhibitory concentration range of free ATP give the pattern expected for a hyperbolic substrate response. By contrast, direct linear plots in which Mn2+ concentration varies over its apparent stimulatory range show that as Mn2+ concentration increases, activities are higher than would be predicted for a hyperbolic substrate response. We conclude that for particulate bovine sperm adenylate cyclase, free ATP is not strongly inhibitory, and Mn2+ is a positive effector, reaching half-maximal stimulation at 0.2 mM. The unique nature of the sperm adenylate cyclase and its possible regulation by Mn2+ under physiological conditions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号