首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D C Phelps  Y Hatefi 《Biochemistry》1985,24(14):3503-3507
Membrane-bound and purified mitochondrial energy-linked nicotinamide nucleotide transhydrogenase (TH) was inhibited by incubation with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA), which is an analogue of TH substrates and their competitive inhibitors, namely, 5'-, 2'-, or 3'-AMP. NAD(H) and analogues, NADP, 5'-AMP, 5'-ADP, and 2'-AMP/3'-AMP mixed isomers protected TH against inhibition by FSBA, but NADPH accelerated the inhibition rate. In the absence of protective ligands or in the presence of NADP, FSBA appeared to modify the NAD(H) binding site of TH, because, unlike unmodified TH, the enzyme modified by FSBA under these conditions did not bind to an NAD-affinity column (NAD-agarose). However, when the NAD(H) binding site of TH was protected in the presence of 5'-AMP or NAD, then FSBA modification resulted in an inhibited enzyme that did bind to NAD-agarose, suggesting FSBA modification of the NADP(H) binding site or an essential residue outside the active site. [3H]FSBA was covalently bound to TH, and complete inhibition corresponded to the binding of about 0.5 mol of [3H]FSBA/mol of TH. Since purified TH is known to be dimeric in the isolated state, this binding stoichiometry suggests half-of-the-sites reactivity. A similar binding stoichiometry was found earlier for complete inhibition of TH by [14C]DCCD [Phelps, D.C., & Hatefi, Y. (1984) Biochemistry 23, 4475-4480]. The active site directed labeling of TH by radioactive FSBA should allow isolation of appropriate peptides for sequence analysis of the NAD(H) and possibly the NADP(H) binding domains.  相似文献   

2.
Purified mitochondrial energy-linked nicotinamide nucleotide transhydrogenase (TH) is inhibited by N,N'-dicyclohexylcarbodiimide (DCCD), and NAD(H) protects the enzyme against this inhibition [Phelps, D.C., and Hatefi, Y. (1984) Biochemistry 23, 4475-4480]. The tryptic digest of TH treated with [14C]DCCD showed a single radioactive peak upon FPLC chromatography. This radioactive peak was absent from tryptic digests of TH treated with [14C]DCCD in the presence of NADH. Sequence analysis of the radioactive peak showed that it contained two peptides, one derived from the other as a result of incomplete cleavage by trypsin of a lysyl-glutamyl bond. After further digestion with Staphylococcus V8 protease, the smaller radioactive fragment was isolated and sequenced. The amino acid sequence of this fragment, as determined by manual Edman degradation, was Ala-Glu-Met-Lys. The second residue was modified. Amino acid analysis and sequence studies on the radioactive tryptic peptide mixture indicated that the sequence around the DCCD-modified residue was Glu-Met-Ser-Lys-Glu-Phe-Ile-Glu-Ala-Glu-Met-Lys. In other studies, this sequence has been found in the amino acid sequence of TH as predicted from the corresponding cDNA. The DCCD-modified peptide is near the site of NAD(H) binding, as labeled with radioactive p-fluorosulfonylbenzoyl-5'-adenosine. Furthermore, there is a high degree of homology in this region between the amino acid sequences of the bovine heart TH and the alpha subunit of the Escherichia coli TH.  相似文献   

3.
The amino acid sequence of the bovine mitochondrial nicotinamide nucleotide transhydrogenase, which catalyzes hydride ion transfer between NAD(H) and NADP(H) coupled to proton translocation across the mitochondrial inner membrane, has been deduced from the corresponding cDNA. Two clones were isolated by screening a bovine lambda gt10 cDNA library, using two synthetic oligonucleotides and a cDNA restriction fragment as probes. The inserts together covered 3,105 base pairs of coding sequence, corresponding to 1.035 amino acid residues. However, the reading frame at the 5' end was still open. N-terminal sequence analysis of the isolated enzyme indicated the presence of 8 additional residues. Thus, the mature transhydrogenase appeared to have 1,043 amino acid residues and a calculated molecular weight of 109,212. The deduced amino acid sequence of the transhydrogenase contained the sequences of four tryptic peptides that had been isolated from the enzyme. Two of these were the peptides that had been used for construction of the oligonucleotide probes. The other two were tryptic peptides isolated after labeling the NAD-binding site of the transhydrogenase once with [3H]p-fluorosulfonylbenzoyl-5'-adenosine (FSBA), and another time with [14C]N,N'-dicyclohexylcarbodiimide. The FSBA-labeled peptide was found to be located immediately upstream of the [14C]N,N'-dicyclohexylcarbodiimide-labeled peptide, about 230 residues from the N terminus. One of the tryptic peptides used for oligonucleotide probe construction was the same as that labeled with [3H]FSBA when the NAD-binding site was protected from FSBA attack. This peptide, which might be at the NADP-binding site of the transhydrogenase, was located very near the C terminus of the enzyme. The central region of the transhydrogenase (residues 420-850) is highly hydrophobic and appears to comprise about 14 membrane-spanning segments. By comparison, the N- and the C-terminal regions of the enzyme, which contain the NAD- and the putative NADP-binding sites, respectively, are relatively hydrophilic and are probably located outside the mitochondrial inner membrane on the matrix side. There is considerable homology between the bovine enzyme and the Escherichia coli transhydrogenase (two subunits, alpha with Mr = 54,000 and beta with Mr = 48,700), whose amino acid sequence has been determined from the genes (Clarke, D.M., Loo, T.W., Gillam, S., and Bragg, P.D. (1986) Eur. J. Biochem. 158, 647-653).  相似文献   

4.
The energy-linked nicotinamide nucleotide transhydrogenase (TH) purified from bovine heart mitochondria is inhibited by the carboxyl group modifiers, N,N'-dicyclohexylcarbodiimide (DCCD) and N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ). With either reagent, complete activity inhibition corresponds to modification of one carboxyl group per 2 mol (monomers) of this dimeric enzyme, suggesting half-site reactivity toward DCCD and EEDQ [D. C. Phelps, and Y. Hatefi (1984) Biochemistry 23, 4475-4480; 6340-6344]. It has also been shown in the former reference that DCCD appears to modify TH at the NAD(H)-binding site. The present paper presents data suggesting that EEDQ also binds at or near the NAD(H)-binding domain of TH, but at a site not identical to that of DCCD: TH modified with and inhibited approximately 85% by EEDQ could be further labeled with [14C]DCCD to the extent of 70% of the maximum in the same time period that unmodified TH was modified by [14C]DCCD to near saturation (1 mol DCCD/TH dimer); DCCD-modified TH did not bind to NAD-agarose, while EEDQ-modified TH showed partial affinity for NAD-agarose; 5'-AMP completely protected TH against modification by DCCD, but showed only a weak protective effect against EEDQ; by contrast, NMNH, which is a TH substrate and binds to the NADH site, did not protect TH against DCCD, but completely protected the enzyme against attack by EEDQ. The results are consistent with the possibility that DCCD modifies TH where the 5'-AMP moiety of NAD(H) binds, while EEDQ modifies the enzyme where the NMN(H) moiety of NAD(H) resides.  相似文献   

5.
M Yamaguchi  Y Hatefi 《Biochemistry》1989,28(14):6050-6056
The mitochondrial nicotinamide nucleotide transhydrogenase is a dimeric enzyme of monomer Mr 110,000. It is located in the inner mitochondrial membrane and catalyzes hydride ion transfer between NAD(H) and NADP(H) in a reaction that is coupled to proton translocation across the inner membrane. The amino acid sequence and the nucleotide binding sites of the enzyme have been determined [Yamaguchi, M., Hatefi, Y., Trach, K., & Hoch, J.A. (1988) J. Biol. Chem. 263, 2761-2767; Wakabayashi, S., & Hatefi, Y. (1987) Biochem. Int. 15, 915-924]. N-Ethylmaleimide, as well as other sulfhydryl group modifiers, inhibits the transhydrogenase. The presence of NADP in the incubation mixture suppressed the inhibition rate by N-ethylmaleimide, and the presence of NADPH greatly increased it. NAD and NADH had little or no effect. The NADPH effect was concentration dependent and saturable, with a half-maximal NADPH concentration effect close to the Km of the enzyme for NADPH. Study of the effect of pH on the N-ethylmaleimide inhibition rate showed that NADPH binding by the enzyme lowers the apparent pKa of the N-ethylmaleimide-sensitive group by 0.4 of a pH unit and NADP binding raises this pKa by 0.4 of a pH unit, thus providing a rationale for the effects of NADP and NADPH on the N-ethylmaleimide inhibition rate. With the use of N-[3H]ethylmaleimide, the modified sulfhydryl group involved in the NADP(H)-modulated inhibition of the transhydrogenase was identified as that belonging to Cys-893, which is located 113 residues upstream of the tyrosyl residue modified by [p-(fluorosulfonyl)benzoyl]-5'-adenosine at the putative NADP(H) binding site of the enzyme (see above references).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Amino acid sequencing of an internal peptide fragment derived from purified Xenopus cytosolic thyroid hormone-binding protein (xCTBP) demonstrates high similarity to the corresponding sequence of mammalian aldehyde dehydrogenase 1 (ALDH1) (Yamauchi, K., and Tata, J. R. (1994) Eur. J. Biochem. 225, 1105-1112). Here we show that xCTBP was co-purified with ALDH and 3,3',5-triiodo-L-thyronine (T3) binding activities. By photoaffinity labeling with [125I]T3, a T3-binding site in the xCTBP was estimated to reside in amino acid residues 93-114, which is distinct from the active site of the enzyme but present in the NAD+ binding domain. The amino acid sequences deduced from the two isolated xALDH1 cDNAs (xALDH1-I and xALDH1-II) were 94.6% identical to each other and very similar to those of mammalian ALDH1 enzymes. The two recombinant xALDH1 proteins exhibit both T3 binding activity and ALDH activity converting retinal to retinoic acid (RA), which are similar to those of xCTBP. The mRNAs were present abundantly in kidney and intestine of adult female Xenopus. Interestingly, their T3 binding activities were inhibited by NAD+ and NADH but not by NADP+ and NADPH, whereas NAD+ was required for their ALDH activities. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular level of free T3.  相似文献   

7.
Liquid chromatographic procedures have been developed for rapidly locating the site of reaction of chemical modification reagents with Salmonella typhimurium 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP) synthetase. The enzyme was reacted with the active site-directed reagent 5'-(p-fluorosulfonylbenzoyl)adenosine (FSBA). FSBA bound to the enzyme with an apparent KD of 1.7 +/- 0.4 mM. The enzyme was inactivated during the reaction, and a limiting stoichiometry of 1.2 mol of FSBA/mol of enzyme subunit corresponded to complete inactivation. Inclusion of ATP in the reaction protected the enzyme from inactivation and incorporation of the reagent. Inclusion of ribose 5-phosphate increased the rate of reaction of PRPP synthetase with FSBA. Amino acid analyses of acid hydrolysates of modified enzyme failed to detect any known FSBA-amino acid adducts. Tryptic digestion of 5'-(p-fluorosulfonylbenzoyl)-[3H]adenosine-modified enzyme at pH 7.0 yielded a single radioactive peptide. The peptide, TR-1, was subjected to combined V8 and Asp-N protease digestion, and a single radioactive peptide was isolated. This radioactive peptide yielded the sequence Asp-Leu-His-Ala-Glu, which corresponded to amino acid residues 128-132 in S. typhimurium PRPP synthetase. No radioactivity was associated with any of the phenylthiohydantoin-amino acid fractions, all of which were recovered in good yield. A majority of the radioactivity was found in the waste effluent (64%) and on the glass fiber filter loaded into the sequenator (23%). The lability of the modification and the sequence of this peptide indicate His130 as the site of reaction with FSBA.  相似文献   

8.
D C Phelps  Y Hatefi 《Biochemistry》1984,23(26):6340-6344
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits the mitochondrial energy-linked nicotinamidenucleotide transhydrogenase (TH). Our studies [Phelps, D.C., & Hatefi, Y. (1981) J. Biol. Chem. 256, 8217-8221; Phelps, D.C., & Hatefi, Y. (1984) Biochemistry 23, 4475-4480] suggested that the inhibition site of DCCD is near the NAD(H) binding site, because NAD(H) and competitive inhibitors protected TH against inhibition by DCCD and, unlike the unmodified TH, the DCCD-modified TH did not bind to NAD-agarose. Others [Pennington, R.M., & Fisher, R.R. (1981) J. Biol. Chem. 256, 8963-8969] could not demonstrate protection by NADH, obtained data indicating DCCD inhibits proton translocation by TH much more than hydride ion transfer from NADPH to 3-acetylpyridine adenine dinucleotide (AcPyAD), and concluded that DCCD modifies an essential residue in the proton channel of TH. The present studies show that N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) also inhibits TH. The inhibition is pseudo first order at several EEDQ concentrations, and the reaction order with respect to [EEDQ] is unity, suggesting that inhibition involves the interaction of one molecule of EEDQ with one active unit of TH. The EEDQ-modified TH reacts covalently with [3H]aniline, suggesting that the residue modified by EEDQ is a carboxyl group. More significantly, it has been shown that the absorbance change of oxonol VI at 630 minus 603 nm is a reliable reporter of TH-induced membrane potential formation in submitochondrial particles and that TH-catalyzed hydride ion transfer from NADPH to AcPyAD and the membrane potential induced by this reaction are inhibited in parallel by either DCCD or EEDQ.  相似文献   

9.
X M Xu  A Matsuno-Yagi  T Yagi 《Biochemistry》1991,30(26):6422-6428
The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides and contains noncovalently bound FMN, non-heme iron, and acid-labile sulfide [Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311]. The NADH-binding subunit (Mr = 50,000) of this enzyme complex was identified by direct photoaffinity labeling with [32P]NADH [Yagi, T., & Dinh, T.M. (1990) Biochemistry 29, 5515-5520]. Primers were synthesized on the basis of the N-terminal amino acid sequence of this polypeptide, and these primers were used to synthesize an oligonucleotide probe by the polymerase chain reaction. This probe was utilized to isolate the gene encoding the NADH-binding subunit from a genomic library of P. denitrificans. The nucleotide sequence of the gene and the deduced amino acid sequence of the entire NADH-binding subunit were determined. The NADH-binding subunit has 431 amino acid residues and a calculated molecular weight of 47,191. The encoded protein contains a putative NAD(H)-binding and an iron-sulfur cluster-binding consensus sequence. The deduced amino acid sequence of the Paracoccus NADH-binding subunit shows remarkable similarity to the alpha subunit of the NAD-linked hydrogenase of Alcaligenes eutrophus H16. When partial DNA sequencing of the regions surrounding the gene encoding the NADH-binding subunit was carried out, sequences homologous to the 24-, 49-, and 75-kDa polypeptides of bovine complex I were detected, suggesting that the structural genes of the Paracoccus NADH dehydrogenase complex constitute a gene cluster.  相似文献   

10.
T Yagi  T M Dinh 《Biochemistry》1990,29(23):5515-5520
The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides and contains noncovalently bound FMN, non-heme iron, and acid-labile sulfide [Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311]. When the Paracoccus NADH dehydrogenase complex was irradiated by UV light in the presence of [adenylate-32P]NAD, radioactivity was incorporated exclusively into one of three polypeptides of Mr approximately 50,000. Similar results were obtained when [adenylate-32P]NADH was used. The labeling of the Mr 50,000 polypeptide was diminished when UV irradiation of the enzyme with [adenylate-32P]NAD was performed in the presence of NADH, but not in the presence of NADP(H). The labeled polypeptide was isolated by preparative sodium dodecyl sulfate gel electrophoresis and was shown to cross-react with antiserum to the NADH-binding subunit (Mr = 51,000) of bovine NADH-ubiquinone oxidoreductase. Its amino acid composition was also very similar to that of the bovine NADH-binding subunit. These chemical and immunological results indicate that the Mr 50,000 polypeptide is an NADH-binding subunit of the Paracoccus NADH dehydrogenase complex.  相似文献   

11.
A Saha  Y C Huang  R F Colman 《Biochemistry》1989,28(21):8425-8431
The substrate affinity label 3-bromo-2-ketoglutarate (BrKG) reacts covalently with pig heart NAD+-specific isocitrate dehydrogenase with complete inactivation and incorporation of about 0.8 mol of reagent/mol of average enzyme subunit [Bednar, R.A., Hartman, F.C., & Colman, R.F. (1982) Biochemistry 21, 3681-3689]. Protection against inactivation is provided by isocitrate and Mn2+. We have now identified a critical modified peptide by comparison of the peptides labeled by BrKG at pH 6.1 in the absence and presence of isocitrate and Mn2+. Modified enzyme, isolated from unreacted BrKG, was incubated with [3H]NaBH4 to reduce the keto group of protein-bound 2-ketoglutarate and thereby introduce a radioactive tracer into the modified amino acid. Following carboxymethylation and digestion with trypsin, the specific modified peptide was isolated by reverse-phase HPLC, first in 0.1% trifluoroacetic acid with a gradient in acetonitrile and then in 20 mM ammonium acetate, pH 5.8, with an acetonitrile gradient. Gas-phase sequencing gave the modified peptide: Ser-Ala-X-Val-Pro-Val-Asp-Phe-Glu-Glu-Val-Val-Val-Ser-Ser-Asn-Ala-Asp-Gl u-Glu- Asp-Ile-Arg. The corresponding tryptic peptide that was isolated from unmodified enzyme yielded the same sequence except for (carboxymethyl)cysteine at position 3, suggesting that cysteine is the target of 3-bromo-2-ketoglutarate. Pig heart NAD+-dependent isocitrate dehydrogenase is composed of three distinct subunits (alpha, beta, and gamma) that can be separated by chromatofocusing in urea and identified by analytical gel isoelectric focusing. The peptide modified by 3-bromo-2-ketoglutarate, which is in or near the substrate site, is derived only from the separated gamma subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Following a lag of about 30 min, the F1-ATPase from the thermophilic bacterium, PS3 (TF1), was inactivated slowly by 0.8 mM 5'-p-fluorosulfonylbenzoyladenosine (FSBA) at 23 degrees C and pH 7.0. When the enzyme was treated with 0.2 mM FSBA at pH 7.0 and 23 degrees C for 15 min and gel-filtered, no enzyme activity was lost. However, the lag in inactivation was abolished when the enzyme was subsequently incubated with 2.0 mM FSBA at 23 degrees C in the pH range from 6.8 to 10.0. The pH-inactivation profile obtained under these conditions revealed a pK alpha of about 9.3 which was associated with the inactivation. When pretreated TF1 was inactivated at 23 degrees C with [3H]FSBA by about 90%, greater than 20 mol of [3H]SBA was incorporated per mole of enzyme. TF1 was inactivated rapidly by 0.8 mM FSBA at pH 6.4 and 65 degrees C, and no lag was observed. Following inactivation of TF1 with 0.8 mM [3H]FSBA at 65 degrees C and pH 6.4, about 10 mol of [3H]SBA was incorporated per mole of enzyme. When a tryptic digest of the labeled enzyme was fractionated by reversed-phase high-performance liquid chromatography, a single major radioactive peptide was isolated. When subjected to automatic Edman degradation, this peptide was shown to have the amino acid sequence: A-L-A-P-E-I-V-G-E-E-H-X-Q-V-A-R, where X indicates that a phenylthiohydantoin derivative was not detected in cycle 12. However, from the DNA sequence of the gene encoding the subunit of TF1 (Y. Kagawa, M. Ishizuka, T. Saishu, and S. Nakao (1985) Abstracts International Symposium on Energy Transducing ATPases, Kobe, Japan, p. 84), this position has been shown to be occupied by tyrosine. This tyrosine is homologous with beta-Tyr-368 of the bovine mitochondrial F1-ATPase (MF1) the modification of which is responsible for the inactivation MF1 by FSBA.  相似文献   

13.
D(-)beta-hydroxybutyrate dehydrogenase (BDH) purified from bovine heart mitochondria contains essential thiol and carboxyl groups. A tryptic BDH peptide labeled at an essential thiol with [3H]N-ethylmaleimide (NEM), and another tryptic peptide labeled at an essential carboxyl with N,N'-dicyclohexyl [14C]carbodiimide (DCCD), were isolated and sequenced. The peptide labeled with [3H]NEM had the sequence Met.Glu.Ser.Tyr.Cys*.Thr.Ser. Gly.Ser.Thr.Asp.Thr.Ser.Pro.Val.Ile.Lys. The label was at Cys. The same peptide was isolated from tryptic digests of BDH labeled at its nucleotide-binding site with the photoaffinity labeling reagent, arylazido- -[3-3H] alanyl-NAD. These results suggest that the essential thiol of BDH is located at its nucleotide-binding site, and agree with our previous observation that NAD and NADH protect BDH against inhibition by thiol modifiers. The [14C]DCCD-labeled peptide had the sequence Glu.Val.Ala.Glu*.Val. Asn. Leu.Trp.Gly.Thr.Val.Arg. DCCD appeared to modify the glutamic acid residue marked by an asterisk. Sequence analogies between these peptides and other proteins have been discussed.  相似文献   

14.
Proton-translocating nicotinamide nucleotide transhydrogenases contain an NAD(H)-binding domain (dI), an NADP(H)-binding domain (dIII) and a membrane domain (dII) with the proton channel. Separately expressed and isolated dIII contains tightly bound NADP(H), predominantly in the oxidized form, possibly representing a so-called "occluded" intermediary state of the reaction cycle of the intact enzyme. Despite a K(d) in the micromolar to nanomolar range, this NADP(H) exchanges significantly with the bulk medium. Dissociated NADP(+) is thus accessible to added enzymes, such as NADP-isocitrate dehydrogenase, and can be reduced to NADPH. In the present investigation, dissociated NADP(H) was digested with alkaline phosphatase, removing the 2'-phosphate and generating NAD(H). Surprisingly, in the presence of dI, the resulting NADP(H)-free dIII catalyzed a rapid reduction of 3-acetylpyridine-NAD(+) by NADH, indicating that 3-acetylpyridine-NAD(+) and/or NADH interacts unspecifically with the NADP(H)-binding site. The corresponding reaction in the intact enzyme is not associated with proton pumping. It is concluded that there is a 2'-phosphate-binding region in dIII that controls tight binding of NADP(H) to dIII, which is not a required for fast hydride transfer. It is likely that this region is the Lys424-Arg425-Ser426 sequence and loops D and E. Further, in the intact enzyme, it is proposed that the same region/loops may be involved in the regulation of NADP(H) binding by an electrochemical proton gradent.  相似文献   

15.
G J Roth  E T Machuga  J Ozols 《Biochemistry》1983,22(20):4672-4675
Aspirin (acetylsalicylic acid) inhibits prostaglandin synthesis by acetylating a single internal serine residue of the initial enzyme in the biosynthetic pathway, prostaglandin synthetase. In this study, the region of the enzyme that is modified by aspirin has been isolated, and its amino acid sequence has been determined. Sheep vesicular gland [acetyl-3H]prostaglandin synthetase was purified following treatment with [acetyl-3H]aspirin and digest with pepsin. An acetyl-3H-labeled peptic peptide of approximately 25 residues was isolated by high-pressure liquid chromatography, and its amino acid sequence was determined to be Ile-Glu-Met-Gly-Ala-Pro-Phe-Ser-Leu-Lys-Gly-Leu-Gly-Asn-Pro-Ile-Glu-Ser-Pro-Glu-Tyr. The acetylated serine residue was located at position 8 in this sequence. The current study marks this polypeptide sequence as a region related to an active site of the enzyme.  相似文献   

16.
Mitochondrial energy-linked nicotinamide nucleotide transhydrogenase (TH; EC 1.6.1.1) was inactivated by treatment with pyridoxal phosphate, ethoxyformic anhydride (EFA) or dansyl chloride. NADP and NADPH, but not NAD and NADH, protected TH against inhibition by pyridoxal phosphate, and L-lysine reversed this inhibition. The results suggested modification of an essential lysyl residue by pyridoxal phosphate, possibly at the NADP(H) binding site of TH. EFA and dansyl chloride inhibited TH in a similar manner. The effect of pH on the rate of inhibition of TH by EFA and dansyl chloride was the same, and in both cases addition of NADP and particularly NADPH accelerated the rate of inhibition, while addition of NAD or NADH had no effect. Double inhibition studies, using in one experiment dithiothreitol-reversible inhibition by 5,5'-dithiobis(2-nitrobenzoic acid) to protect the thiol groups of TH, and in another experiment lysine-reversible inhibition by pyridoxal phosphate to protect the putative essential lysyl residues of the enzyme, followed in each case by further treatment of the protected TH with EFA or dansyl chloride, suggested that the inhibitions by EFA and dansyl chloride were independent of the inhibitions by 5,5'-dithiobis (2-nitrobenzoic acid) and pyridoxal phosphate. The inhibitors discussed above are interesting, because pyridoxal phosphate is the only reagent known which appears to modify an essential residue in the NADP(H), but not the NAD(H), binding site of TH, and EFA and dansyl chloride are the only inhibitors known which appear to react with essential residues outside the active site of TH. It is possible that EFA and dansyl chloride inhibitions involve modification of essential prototropic residues in the proton translocation domain of the enzyme.  相似文献   

17.
The lpdA (Rv3303c) gene from Mycobacterium tuberculosis encoding a new member of the flavoprotein disulfide reductases was expressed in Escherichia coli, and the recombinant LpdA protein was purified to homogeneity. LpdA is a homotetramer and co-purifies with one molecule of tightly but noncovalently bound FAD and NADP+ per monomer. Although annotated as a probable lipoamide dehydrogenase in M. tuberculosis, LpdA cannot catalyze reduction of lipoyl substrates, because it lacks one of two cysteine residues involved in dithiol-disulfide interchange with lipoyl substrates and a His-Glu pair involved in general acid catalysis. The crystal structure of LpdA was solved by multiple isomorphous replacement with anomalous scattering, which confirmed the absence of these catalytic residues from the active site. Although LpdA cannot catalyze reduction of disulfide-bonded substrates, it catalyzes the NAD(P)H-dependent reduction of alternative electron acceptors such as 2,6-dimethyl-1,4-benzoquinone and 5-hydroxy-1,4-naphthaquinone. Significant primary deuterium kinetic isotope effects were observed with [4S-2H]NADH establishing that the enzyme promotes transfer of the C4-proS hydride of NADH. The absence of an isotope effect with [4S-2H]NADPH, the low Km value of 0.5 microm for NADPH, and the potent inhibition of the NADH-dependent reduction of 2,6-dimethyl-1,4-benzoquinone by NADP+ (Ki approximately 6 nm) and 2'-phospho-ADP-ribose (Ki approximately 800 nm), demonstrate the high affinity of LpdA for 2'-phosphorylated nucleotides and that the physiological substrate/product pair is NADPH/NADP+ rather than NADH/NAD+. Modeling of NADP+ in the active site revealed that LpdA achieves the high specificity for NADP+ through interactions involving the 2'-phosphate of NADP+ and amino acid residues that are different from those in glutathione reductase.  相似文献   

18.
Bacillus cereus glutamine synthetase was modified by reaction with a fluorescent SH reagent, N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonic acid (IAEDANS), or an ATP analog, 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The locations of the specific binding sites of these reagents were identified. IAEDANS inactivated Mg2(+)-dependent activity and activated Mn2(+)-dependent activity. FSBA inactivated only Mn2(+)-dependent activity. Mg2+ plus Mn2(+)-dependent activity was inactivated by IAEDANS or FSBA. Amino acid sequence analysis of the single AEDANS-labeled proteolytic fragment showed the cysteinyl residue at position 306 to be the site of modification. Cys 306 is one of three cysteines that are unique to Bacillus glutamine synthetase. The result suggested that the cysteine has a role in the active site of the enzyme. We also report that the amino acid residue modified by FSBA was the lysyl residue at position 43.  相似文献   

19.
S Chen  T D Lee  K Legesse  J E Shively 《Biochemistry》1986,25(19):5391-5395
We have identified the site labeled by arylazido-beta-alanyl-NAD+ (A3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NAD+) in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase by microsequencing and fast atom bombardment mass spectrometry. This NAD+ photoaffinity analogue has been previously demonstrated to modify glyceraldehyde-3-phosphate dehydrogenase in a very specific manner and probably at the active site of the enzyme [Chen, S., Davis, H., Vierra, J. R., & Guillory, R. J. (1984) Biochem. Biophys. Stud. Proteins Nucleic Acids, Proc. Int. Symp., 3rd, 407-425]. The label is associated exclusively with a tryptic peptide that has the sequence Ile-Val-Ser-Asn-Ala-Ser-Cys-Thr-Thr-Asn. In comparison to the amino acid sequence of glyceraldehyde-3-phosphate dehydrogenase from other species, this peptide is in a highly conserved region and is part of the active site of the enzyme. The cysteine residue at position seven was predominantly labeled and suggested to be the site modified by arylazido-beta-alanyl-NAD+. This cysteine residue corresponds to the Cys-149 in the pig muscle enzyme, which has been shown to be an essential residue for the enzyme activity. The present investigation clearly demonstrates that arylazido-beta-alanyl-NAD+ is a useful photoaffinity probe to characterize the active sites of NAD(H)-dependent enzymes.  相似文献   

20.
1. An assay for demethylation has been developed based on the release of tritium from 4,4-dimethyl[3alpha-(3)H]cholest-7-en-3beta-ol (II). 2. The maximum release of (3)H from 3alpha-(3)H-labelled compound (II) in a rat liver microsomal preparation occurs in the presence of NADPH and NAD(+) under aerobic conditions. 3. Incubation of 3alpha-(3)H-labelled compound (II) with NADPH under aerobic conditions leads to the formation of a 3alpha-(3)H-labelled C-4 carboxylic acid. This compound undergoes dehydrogenation on subsequent anaerobic incubation with NAD(+). 4. The (3)H released from the steroid was located in [4-(3)H]nicotinamide and the medium. Incubation with synthetic [4-(3)H(2)]NADH gave a similar result. 5. In the presence of glutamate dehydrogenase and alpha-oxoglutarate part of the (3)H released from the steroid was transferred to glutamate. 6. A series of 3-oxo steroids were reduced equally well by [4-(3)H(2)]NADH and [4-(3)H(2)]NADPH. The reduction of 5alpha-cholest-7-en-3-one was shown to use the 4B H atom from the nucleotide. 7. 3':5'-Cyclic AMP was shown to be a competitive inhibitor of the 3beta-hydroxy dehydrogenase enzyme in the demethylation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号