首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used three anti-H monoclonal antibodies (MAbs) specific for H Type 1, H Type 2, and H Type 3/4 antigens to investigate the distribution of H Type 1-H Type 4 chains of the ABO(H) histo-blood group in the human respiratory system. Strong staining of H Type 1 chain and weak staining of H Type 2 chain were observed in mucous cells of submucosal glands of bronchial epithelium, which were dependent on the secretor status. No H Type 3/4 chains were detected in mucous cells. Serous cells of submucosal glands of respiratory system showed no staining by three anti-H antibodies. H Type 1 and H Type 3/4 antigens were detected heterogeneously in apical surfaces of bronchial epithelium from secretors but not from nonsecretors. In contrast, basal cells of bronchial epithelium expressed H Type 2 irrespective of the secretor status, probably regulated by the H gene. Some alveolar Type II cells contained only H Types 3/4, which were dependent on the secretor status, whereas alveolar Type I cells had no H antigens. Our results indicated that different cell types in respiratory epithelium expressed different types of carbohydrate chains of histo-blood group antigens under the control of the H or the Se gene.  相似文献   

2.
The lactating mammary gland of the African elephant (Loxodonta africana) has been studied with a panel of morphological techniques focusing on (1) the functional changes during the secretory process, (2) proliferative process [by application of proliferating cell nuclear antigen (PCNA) immunohistochemistry] and apoptotic phenomena [by use of the TUNEL technique] in the individual lobules, and (3) components of milk and milk-fat-globule membrane. In the lactating gland, the lobules are variably differentiated; within a lobule, however, the alveoli are usually similarly differentiated. The morphology of their alveoli suggests a classification of the lobules into types 1–3. Lobules of type 1 are composed of immature tubular alveoli with mitotic figures and numerous PCNA-positive nuclei; advanced type 1 alveoli contain abundant glycogen and specific secretory granules. Lobules of type 2 are further subdivided. In type 2a lobules, the epithelial cells of the alveoli form tall apical protrusions, which in part are occupied by small lipid droplets and which are pinched off in an apocrine fashion. The number of lysosomes varies considerably. Type 2b is the most common type, with striking basal membrane foldings, abundant rough endoplasmic reticulum cisterns, large Golgi apparatus, numerous mitochondria, lipid droplets, and protein vesicles with 30- to 90-nm-wide casein micelles. The lipid droplets are pinched off with minimal amounts of cytoplasm. Type 2c is composed of alveoli with a cuboidal epithelium and few signs of secretory activity. Increasing expression of peanut-agglutinin-binding sites parallels the maturation and differentiation of the glandular cells. Type 3 lobules are marked by numerous TUNEL-positive nuclei and large lipid droplets and are apparently degenerating structures. Cytokeratin (CK) 14 is usually present in the myoepithelial cells; CK 19 and CK 7 mark ductal and immature alveolar epithelia. Milk protein content varies between 2.6% and 6.3%, and casein micelles range from 35 to 90 nm in diameter. The diameter of intra-alveolar milk fat globules ranges from 5 to 25 µm and the membranes bear a filamentous surface coat composed of membrane-anchored mucins; gel-electrophoretic analysis of these mucins from different individuals demonstrates the presence of mucin MUC 1, which is expressed with considerable genetic heterogeneity.  相似文献   

3.
Both, calmodulin (CaM) as well as the antigen Ki67 show a close relationship to cell proliferation. By means of specific antibodies against them, it has become possible to study the spatial distribution of proliferative compartments in tissues. We performed an indirect immunofluorescence study on unfixed frozen sections of human adult skin to gain more informations about the spatial distribution of immunoreactive CaM and Ki67 in skin appendages, i.e. anagen hair follicle, sebaceous and eccrine sweat gland. Two major patterns of immunoreactivity were seen: Type (1) or epidermis-like, which was present in the interfollicular epidermis and the pilosebaceous unit. Type (2) or sweat gland type, which was seen in eccrine sweat glands. Both types disclosed significant differences in the relative number of proliferative cells in S-phase, which might be a consequence of a quiet different tissue architecture. Furthermore, myoepithelial cells of secretory coils were likely to represent mainly SQ-cells. Their immunoreactivity in human skin was quiet different from other parts of eccrine sweat glands suggesting another ontogenetic pathway.  相似文献   

4.
Epidermal basal cells invaginate into the dermis to form sweat ducts, which then grow downwards further to form secretory coils during the ontogenesis of eccrine sweat glands, but the time course of differentiation of different cell types in 3D-reconstructed eccrine sweat glands remain unclear. In this study, secretory cell-specific marker K7, clear secretory cell-specific marker CA II, dark secretory cell-specific marker GCDFP-15, myoepithelial cell-specific marker α-SMA, inner duct cell-specific marker S100P and outer duct cell-specific marker S100A2 were detected by immunofluorescence staining. The results showed that S100P and S100A2 were first detected at 2 weeks post implantation, K7 and α-SMA at 3 weeks, and GCDFP-15 and CA II at 4 weeks. The differentiation of ducts preceded secretory coils in 3D-reconstructed eccrine sweat glands. After 8 weeks post implantation, the distribution of these markers in 3D-reconstructed eccrine sweat glands was similar to that in native ones, and the percentage of the 3D-reconstructed glands expressing these markers maintained steady. We conclude that although the 3D-reconstructed and native eccrine sweat glands originated from different cells, the differentiation of different cell types in 3D-reconstructed eccrine sweat glands parallels the sequence observed during embryonic development.  相似文献   

5.
The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands (P?<?0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23?±?0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51?±?778.71 μm2) and quantity per square centimeter (390?±?9 cm?2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03?±?1.75 W?m?2) and possessed the highest surface temperatures (39.47?±?0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.  相似文献   

6.
Light and electron microscopy of the glandular epithelium of intersegmental membranes between sternites three and seven and tergites two and eight of various age groups of Nauphoeta cinerea male adults and one age group of female adults discloses differences in the epithelia of the intersternite and intertergite. The intersternal epithelium appears thicker, more glandular, and stratified. Altogether, seven cell types are recognizable, six in the male and two in the female. They are designated as types 1, 2a, 2b, 2c, 3, 4, and 5. Of these, types 1, 2a, 3, and 4 are recognizable on the sternum; types 1, 2b, and 5 on the tergum of the mature male integuments. Types 1 and 2c are found on the sternum of mature female. The cell types undergo morphological differentiation after adult emergence and show different stages of secretory activity. Type 1 are squamous cuticle-secreting cells; type 2a, 2b, and 2c are columnar-glandular and contain electron-transparent secretory vesicles of various sizes, which increase greatly in number and size in the 5-day-old adult males when the glands are most active. The vesicular size and number also differ between types 2a, 2b, and 2c cells of the same age group. The vesicles are assumed to be derived from smooth endoplasmic reticulum. The type 2 gland cells are also provided with a secretory end apparatus lined by cuticle and bordered by microvilli through which the secretion is believed to be released by exocytosis. The end apparatus leads into a cuticular ductule that opens to the surface of the cuticle as a cup-shaped receptacle, which is more conspicuous in the male intersternite. In the active gland cells, the mitochondria near the end apparatus are swollen and vacuolated. Type 3 cells are seen only on the intersternum and are believed to secrete the cuticular ductule that proceeds from the end apparatus. Type 4 cells are also recognizable only on the male intersternum and contain closely packed, electron-dense bodies, which are most numerous in mature (5-day-old) males. Type 5 cells with their dense cytoplasm are located basally in the intertergal epithelium. The functional significance of type 4 and 5 cells in the males and type 2c cells in the female is not clear. On the basis of differences in morphology, pheromone activity, and sexual behavior, it is suggested that the pheromones secreted by the intersternal and intertergal glands in the male are different, the former secreting a seducin that attracts the female to the male and the latter an “aphrodisiac” acting as a contact pheromone important in accomplishing mating.  相似文献   

7.
Two types of choanocyte-like cells have been found in the digestive tract of the starfish. Type I choanocytes are in the lining epithelium of all organs of the digestive system. These are narrow, columnar cells strongly anchored basally and expanded apically into a protuberance projecting into the lumen. A prominent flagellum surrounded by microvilli projects from the center of this protuberance. Apical cytoplasm contains numerous mitochondria, secondary lysosomes, and multivesicular bodies. A distinctive characteristic of these cells is a filament bundle that traverses the length of the cell from its region of attachment on the rootlet of the flagellar basal body to its terminus on the basal plasma membrane. Between the attenuated basal ends of type I cells are the nerve fibers of an intraepithelial nerve plexus. Thickness of the plexus is correlated with the quantity of type I cells in the epithelium. Type II choanocytes are in the cuboidal coelomic epithelium that forms the outer layer of digestive tract organs. These cells are smaller than those of type I, and they have an apical collar surmounted by a ring of 13 microvilli. Within the collar is a cup-shaped depression with a central flagellum. Coated vesicles, secondary lysosomes, and phagocytic infoldings are observed in and near the collar cytoplasm. Filament bundles similar to those in type I choanocytes are also observed in coelomic epithelial cells that are sufficiently tall. Injection of peroxidase into the stomach and ferritin into the coelom results in phagocytic uptake of these macromolecules by type I and type II choanocytes, respectively.  相似文献   

8.
The ultrastructure of the seminal vesicle, ejaculatory duct, cirrus sac and cirrus is described. The epithelium of the seminal vesicle consists of a single layer of squamous to cuboidal cells. The apical ends of the cells have thin polymorphic lamellae and long narrow pits, both of which enclose normal spermatozoa. The cells have a moderate amount of GER and Golgi complexes which produce a lucid secretory body. The ejaculatory duct epithelium is composed of cuboidal to columnar cells between or through which project the terminal parts of the ducts of the unicellular prostate glands. The apical surfaces of the epithelia are extended into triangular or filiform projections having thin sinuous lamellae. The cytoplasm contains GER cisternae and Golgi complexes which synthesize a dense ovoid secretion. The cirrus sac and cirrus are covered by a thin modified tegument. The cirrus has many spines and the normal ratio of T1 and T2 type of secretory bodies, whereas the cirrus sac has few spines and the T2 type of secretory body predominates over the T1 type. The significance and possible functions of the structures observed in the three tissues are discussed.  相似文献   

9.
Gravid ovaries were examined histologically from two species of Nomorhamphus and 21 populations of Dermogenys. In addition, changes in dry-weight throughout gestation are provided for 15 populations. The ovaries are paired organs running along the lateral body wall and are separated along most of their length. In all specimens examined, embryos are fertilized within the ovarian follicle. Viviparity in these species is divided herein into five categories designated types I–V. In types I and II the entire gestation period is intrafollicular, whereas in types III–V only the early stages of gestation are intrafollicular with the major period of development occurring in the ovarian lumen (intraluminal). Type I is characterized by the retention of a large amount of yolk throughout gestation. Superfetation is not observed. Populations of D. pusilla from Vietnam and Thailand decrease in dry-weight throughout gestation. This, coupled with the slight vascularization of the yolk sac, suggests strict lecithotrophy. Populations of D. pusilla from Singapore and Bangladesh undergo an increase in dry weight and exhibit an increased vascularization of the yolk sac, suggesting a form of unspecialized matrotrophy. Type II is characterized by a small amount of yolk, an expansion of the coelomic cavity and pericardial sac, and a simple cuboidal epithelium on the general body surfaces. Superfetation occurs with up to three broods present within a single ovary. Dermogenys pusilla from Sabah, D. orientalis and Dermogenys sp. (Sulawesi) exhibit the type II form of viviparity. Dermogenys vivipara from the eastern Philippine islands of Culion and Busuanga exhibit characteristics considered intermediate between type I and II. These results are compared with those from other viviparous species exhibiting intrafollicular gestation. In species with types III–V (intraluminal gestation), developing oocytes are restricted to a distinct ridge of ovigerous tissue extending along the entire length of the ovary. Two species, D. viviparus (Luzon, Philippines) and Dermogenys sp. (Luzon) have the type III form of viviparity. In this form, oocytes are small (0.8–1.0 mm) with little yolk reserves and embryos, covered with a simple cuboidal epithelium and possessing an expanded belly sac, are retained within the follicles until a late fin-bud stage. Type III embryos found within the ovarian lumen have a greatly expanded belly sac and remain covered by a simple cuboidal epithelium until parturition. Superfetation is present in these species with two broods observed simultaneously within a single ovary. Five species, D. megarrhamphus, D. weberi, D. viviparus (Jolo, Philippines), Nomorhamphus sp. (Sulawesi), and N. towoetii, were observed with the type IV form of viviparity. Embryos in this category are evacuated into the ovarian lumen prior to a fin-bud stage and retain a large yolk mass throughout development. Superfetation is absent in these species. A differentform of viviparity (type V) is present in D. ebrardtii in which embryos appear to obtain nutrients through a form of oophagy and aldelphophagy (feeding on developing oocytes or less-developed siblings). In all specimens with intraluminal development, atretic oocytes within the ovigerous ridge are abundant. These findings support the hypothesis that current species and generic limits may be artificial and underscores the potential of histological evidence for phylogenetic analysis of this group. J. Morphol. 234:295–317, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
The pulmonary alveolar epithelium consists of alveolar type I (AT1) and alveolar type II (AT2) cells. Interactions between these two cell types are necessary for alveolar homeostasis and remodeling. These interactions have been difficult to study in vitro because current cell culture models of the alveolar epithelium do not provide a heterocellular population of AT1 and AT2 cells for an extended period of time in culture. In this study, a new method for obtaining heterocellular cultures of AT1- and AT2-like alveolar epithelial cells maintained for 7 d on a rat tail collagen-fibronectin matrix supplemented with laminin-5 is described. These cultures contain cells that appear by their morphology to be either AT1 cells (larger flattened cells without lamellar bodies) or AT2 cells (smaller cuboidal cells with lamellar bodies). AT1-like cells stain for the type I cell marker aquaporin-5, whereas AT2-like cells stain for the type II cell markers surfactant protein C or prosurfactant protein C. AT1/AT2 cell ratios, cell morphology, and cell phenotype-specific staining patterns seen in 7-d-old heterocellular cultures are similar to those seen in alveoli in situ. This culture system, in which a mixed population of phenotypically distinct alveolar epithelial cells are maintained, may facilitate in vitro studies that are more representative of AT1-AT2 cell interactions that occur in vivo.  相似文献   

11.
The inferior and superior cardial glands of the esophageal wall have been studied in 156 mature persons (67 women and 89 men). The inferior cardial glands are represented as glandular brackets with predominance of secretory parts of the tubular form. In the superior cardial glands acini in the alveolar-tubular form are well developed. Glandular epithelium in terminal parts is polymorphic. In most of the acini it is cylindrical and sometimes cuboidal. The ducts of the cardial glands have a peculiar structure. Their simple cylindrical epithelium joins with multilayered esophageal epithelium. In the area of the ducts the multilayered esophageal epithelium often becomes thin and exfoliates, and this area of the mucous membrane is covered with cylindrical glandular epithelium.  相似文献   

12.
The respiratory epithelium in the lungs of the tortoise (Testudo graeca) has been studied by electron microscopy. The epithelium consists of a mosaic of two different cell types (here called "pneumonocytes"). Type I pneumonocytes are roughly squamous and possess attenuated flanges of cytoplasm which extend over the septal capillaries. Localized cytoplasmic expansions are often present near the periphery of these flanges. Most of the organelles are concentrated in the perinuclear region; the most prominent of these are the mitochondria and osmiophilic inclusions. In contrast, type II pneumonocytes are cuboidal and are richly endowed with organelles including large Golgi complexes, extensive endoplasmic reticulum and numerous inclusion bodies. The morphological evidence suggests that type I pneumonocytes are involved in the secretion of osmiophilic material (presumed to be pulmonary surfactant) and in maintaining the integrity of the air-blood barrier. Type II pneumonocytes appear to be concerned solely with the production of surfactant.  相似文献   

13.
14.
Among arthropods, various insects, spiders, and crustaceans produce thread. The crustacean Tanaidacea include species that use thread mainly to construct dwelling tubes. While thread production was previously known only in Tanaoidea and Paratanaoidea, it was recently discovered in two species in Kalliapseudidae (Apseudoidea), although information on the morphology of the thread‐producing system was lacking. Using histology, light and scanning electron microscopy, we found that the kalliapseudid Phoxokalliapseudes tomiokaensis comb. nov. lacks the sort of glandular structures associated with thread production in the pereonites, but has these structures in pereopods 1–6. We observed four types of glandular systems defined by the types and distribution of glands they contain: Type A (pereopod 1), Type B (pereopods 2 and 3), Type C (pereopods 4 and 5), and Type D (pereopod 6). All types have small rosette glands and lobed glands; Type A additionally has large rosette glands. The inferred thread‐producing apparatus in P. tomiokaensis is very different from that in Tanaoidea and Paratanaoidea, suggesting that kalliapseudids evolved thread production independently from the latter two groups. J. Morphol. 275:1041–1052, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
The morphology of the bean-shaped accessory glands (BAGs) of males of Tenebrio molitor is described. All cells in the secretory epithelium are long and narrow (300–400 mμ × 5 mμ). The seven types of secretory cells are distinguished from one another by the morphology of their secretory granules. Granule substructure varies from simple spheres with homogeneous electrondense contents to complex forms with thickened exterior walls or with crystalline and membranous contents. Individual cell types were mapped by staining whole glands with Oil Red O, and the cell distributions were confirmed by wax histology and ultramicroscopy. The secretions of all seven cell types form a secretory plug composed of seven layers. During mating, the secretory plug from each BAG is forced into the ejaculatory duct by contractions of a sheath of circular muscle. The mirror image plugs from symmetrical BAGs fuse and are transformed into the wall of the spermatophore.  相似文献   

16.
N Hisano 《Acta anatomica》1977,97(4):371-378
We have made a histological study of the postnatal development of the clitoris, preputial glands, urethral glands and vagina of the golden hamster. The 'phallic groove' of the clitoris is closed at 10 days of life, then the urethra has a cuboidal stratified, a stratified squamous and a stratified keratinized epithelium. The preputial glands are composed of branched saccular glands. These glands develop, with few changes during their maturation period. Formation of the urethral glands begins at 5 days and the alveoli are fully developed at puberty. The hamster vagina has two origins; the upper part is Müllerian, the caudal part is sinusal. The wall of the Müllerian vagina has a cylindrical epithelium at birth, which becomes 'double epithelium' at puberty and thereafter changes cyclically in connection with the estrous cycle. The sinusal vagina is solid at birth, its lumen being formed in the first 10 days of life and its wall having a cuboidal stratified epithelium. At 15 days it becomes a stratified keratinized epithelium, which will later line the vaginal pouch. At the 5th day, an ectodermic invagination (stratified keratinized epithelium) is observed in the zone of the future introitus. At the time of vaginal opening this zone forms the distal segment.  相似文献   

17.
An 11-yr-old female beaver (Castor canadensis) died after a 3 1/2 mo course of intermittent diarrhea, lethargy and anorexia. A postmortem examination revealed both a necrotizing ulcerative colitis and bilaterally enlarged thyroid glands. Histologically, the necrotizing colitis was similar to that caused by canine or feline parvovirus. Thyroid glands were multilobulated. Lobules were composed of irregularly arranged, variably sized follicles, some of which contained colloid. Follicles were lined by a pleomorphic population of tall cuboidal to columnar epithelial cells. Capsular invasion was present. Similar cells, forming follicles were present within the pulmonary parenchyma. This is the first documented case of a thyroid follicular carcinoma with pulmonary metastases in a beaver.  相似文献   

18.
Summary The effects of various extracellular matrices and collagenous components on the morphology, growth, and function of cultured alveolar type 2 cells is examined. Cells grown on an endothelial matrix (EC) showed the greatest adherence, some cell division, and spreading to reach confluence sooner than cells grown on an epithelial matrix or on various types of collagen. The attenuated cells from all cultures were not true type 1 cells because, on trypsinization, they detached as sheets, reverted immediately to a cuboidal shape held together by junctional complexes, and showed an apparently normal content of lamellar bodies. The greatest synthesis of disaturated phosphatidylcholine (DSPC) was seen in cells grown on EC soon after confluence, but all cultures showed reduced but equal levels of DSPC-DNA by Day 4. This occured whether cells were attenuated or cuboidal in shape. The results suggest that some component(s) of the endothelial matrix at the alveolar basement membrane facilitates epithelial cell growth. However, over longer culture periods the matrix preparations had little effect on type 2 cell proliferation whereas function diminished. This suggests that maintenance of these cells as normal type 2 cells or their further differentiation to the type 1 form requires some additional cell derived factor(s). This research was supported by grants from the Medical Research Council of Canada and the Council for Tobacco Research, U.S.A., Inc.  相似文献   

19.
Eight secretory cell types are identified in the clitellar epithelium of Eisenia foetida, of which five have been described in detail previously (i.e., the large granular, fine granular, metachromatic, orthochromatic, and small granular proteinacecus cells). The remaining three secretory cell types are mucus-producing cells specific to the clitellar epithelium (type 3), cells associated with the chaetal follicles (type 4), and cells that occur exclusively in the tubercula pubertatis (type 5). Type 3 cells secrete a mucus containing neutral and acid mucosubstances. Ultrastructurally, type 3 cells are characterized by membrane-bound globules 0.4 to 3.7 μm in diameter. The contents of the globules have a finely reticulate appearance. The secretion of type 4 cells contains a collagenlike protein and neutral and sulfated acid mucosubstances. Type 4 cell secretory granules are membrane bound and range in diameter from 0.8 to 1.6 μm. They contain large, electron-dense, spheroid cores which are surrounded by parallel orientated microfibrils 14 nm in diameter. Type 5 cells give variable responses to the histochemical techniques used in the present study. An elastinlike protein is detected in about half of the type 5 cells and acid and neutral mucosubstances in the remainder. At the ultrastructural level the secretory granules vary in shape from spheroid to polygonal. Their finely, electron-dense contents exhibit progressive swelling which results in the eventual rupture of the limiting membranes of the granules. The necks of types 3, 4, and 5 cells contain a peripheral ring of microtubles (20 ± 1 nm in diameter).  相似文献   

20.
To better understand the role of estradiol-17β in fetal ovarian development, presence and localization of cytochrome P450 aromatase (P450arom) and estrogen receptors alpha (ERα) and beta (ERβ) proteins were characterized in fetal ovaries of cattle using immunohistochemistry. Fetal cattle ovaries were collected from an abattoir and sorted into fetal age groups (days 110, 130, 150, 170, 190, 210, 230, 250+) based on crown-rump length. In addition to immunohistochemistry, morphological analysis of ovarian and follicular formation was made. Ovaries appeared lobular at day 110, but by the end of gestation (day 250+) ovaries were oval-shaped similar to those found in adult animals. Ovarian structures within different lobes appeared to be at different developmental stages. At day 110, oocytes and pre-granulosa cells were observed in ovigerous cords that were still open to the surface epithelium. Most ovigerous cords appeared to be closed to the surface epithelium on day 130, all closed by day 150 and were no longer present at day 210. Ovarian follicles were classified as follows: Type 1(primordial): single layer of flattened granulosa cells, Type 1a (transitory): single layer of mixed flattened and cuboidal granulosa cells, Type 2 (primary): at least one but less than two layers of cuboidal granulosa cells, Type 3 (small preantral): two to three layers of granulosa cells, Type 4 (large preantral): four to six layers of granulosa, and the theca layer is forming around the follicle, Type 5 (antral): contain greater than six layers of granulosa cells, several layers of theca cells and the antrum has formed. Type 1 follicles were observed in day 110 ovaries. Follicle Types 1a and 2 were first observed on day 130. Type 3 follicles were first observed on day 150 and Types 4 and 5 were first observed on day 170. P450arom protein was localized in granulosa cells of follicle Types 2–5 and cells of rete tubules throughout the experimental period. There was punctate expression within stroma and rete masses. There was ERα protein localization in pre-granulosa cells and germ cells of ovigerous cords and all surface epithelial cells. There was also localization in granulosa cells and oocytes of all follicle types and cells of rete tubules. There was punctate ERα protein expression in stroma and rete masses. ERβ protein was localized in pre-granulosa cells and germ cells of ovigerous cords. Expression was also localized to granulosa cells of all follicle types and cells of rete tubules. ERβ protein was punctate in oocytes of follicles, surface epithelial cells, stroma and rete masses. Thus, the fetal ovary of cattle has the steroidogenic enzyme (P450arom) to convert androgens to estradiol-17β, and estrogen receptors α and β to facilitate an estrogen response within the fetal ovary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号