首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Water Framework Directive (WFD) of the European Union requires all member countries to provide information on the level of confidence and precision of results in their river monitoring programmes to assess the ecological status class of river sites. As part of the European Union project STAR, the overall effects of sampling variation for a wide range of commonly used metrics and sampling methods were assessed. Replicate samples were taken in each of two seasons at 2–6 sites of varying ecological status class within each of 18 stream types spread over 12 countries, using both the STAR-AQEM method and a national sampling method or, where unavailable, the RIVPACS sampling protocol. The sampling precision of a combination of sampling method and metric was estimated by expressing the replicate sampling variance as a percentage Psamp of the total variance in metric values with a stream type; low values of Psamp indicate high precision. Most metrics had percentage sampling variances less than 20% for all or most stream types and methods. Most national methods including RIVPACS had sampling precisions at least as good as those for the STAR-AQEM method as used in their country at the same sites; the main exceptions were the national methods used in Latvia and Sweden. The national methods used in the Czech Republic, Denmark, France, Poland and the RIVPACS method used in the UK and Austria all had percentage sampling variances of less than 10% for the majority of metrics assessed. In contrast, none of the metrics had percentage sampling variances less than 10% when based on either the Italian (IBE) method, which used bank-side sorting, or the Latvian national method which identifies only a limited set of taxa. Psamp was lowest on average for the two stream types sampled in the Czech Republic using either the PERLA national method or the STAR-AQEM method. Averaged over all stream types and methods, the three Saprobic-based metrics had the lowest average percentage sampling variances (3–6%) amongst the 26 metrics assessed. These estimates of sampling standard deviation can be used to help assess the uncertainty in single or multi-metric systems for estimating site ecological status using the general STAR Bioassessment Guidance Software (STARBUGS) developed within the STAR project.  相似文献   

2.
As part of the extensive field sampling programme within the European Union STAR project, replicate macroinvertebrate samples were taken using the STAR-AQEM sampling method at each of 2–13 sites of varying ecological quality within each of 15 stream types spread over 12 countries throughout Europe. The STAR-AQEM method requires the sub-sampling and taxonomic identification of at least one-sixth of the sample and at least 700 individuals. Replicate sub-samples were also taken at most of these sites. Sub-sampling effects caused more than 50% of the overall variance between replicate samples values for 12 of the 27 macroinvertebrate metrics analysed and was generally greatest for metrics that depend on the number of taxa present. The sampling precision of each metric was estimated by the overall replicate sampling variance as a percentage Psamp of the total variance in metric values within a stream type. Average over all stream types, the three Saprobic indices had the lowest percentage sampling variances with median values of only 3–6%. Most of the metrics had typical replicate sampling variances of 8–18% of the total variability within a stream type; this gives rise to estimated rates of mis-classifying sites to ecological status class of between 22 and 55% with an average of about 40%. This suggests that the precision of such metrics based on the STAR-AQEM method is only sufficient to indicate gross changes in the ecological status of sites, but there will be considerable uncertainty in the assignment of sites to adjacent status classes. These estimates can be used to provide information on the effects of STAR-AQEM sampling variation on the expected uncertainty in multi-metric assessments of the ecological status of sites in the same or similar stream types, where only one sample has been taken at a point in time and thus there is no replication.  相似文献   

3.
The EU-funded STAR-project provided an opportunity to analyse 1418 macroinvertebrate samples from 310 sampling sites throughout Europe. At most of the sites, samples were taken in two seasons using both national protocols and the project’s STAR-AQEM protocol. At a subset of sites (86), two replicate samples were taken by each method in each of the two seasons. The resulting taxalists were analysed in terms of community similarity using the Bray–Curtis Index, Jaccard, and Renkonen Indices. A new concept of sample ‘coherence’ is used to measure the relative strength of within-site, within-season and within-method similarity and to determine their importance on variability in community composition. Site-coherence (i.e., highest similarity to another sample from the same site) was much higher where replicate samples were available. Season-coherence of samples was nearly 100% even if different methods were compared. Season appeared to be one of the major determinants of in-stream fauna. The STAR-AQEM method is most comparable to the Nordic, Portuguese and Czech (PERLA) national methods and less comparable to the Italian (IBE) and Latvian methods. Samples collected by these latter methods had higher similarities to other sites sampled with the same methods than to samples of the same site using the STAR-AQEM method, thus there was low site-coherence. In three stream types from Italy, Latvia and Greece 28–38% of the samples were most similar to a sample from a different site than to a replicate sample from the same site. This fact could have serious consequences for follow up bioassessments or impact assessments by cluster analysis based on similarity measures. Replicate samples are less coherent within site, season or method if the taxonomic resolution is family rather than species. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

4.
This study assesses the impact of errors in sorting and identifying macroinvertebrate samples collected and analysed using different protocols (e.g. STAR-AQEM, RIVPACS). The study is based on the auditing scheme implemented in the EU-funded project STAR and presents the first attempt at analysing the audit data. Data from 10 participating countries are analysed with regard to the impact of sorting and identification errors. These differences are measured in the form of gains and losses at each level of audit for 120 samples. Based on gains and losses to the primary results, qualitative binary taxa lists were deducted for each level of audit for a subset of 72 data sets. Between these taxa lists the taxonomic similarity and the impact of differences on selected metrics common to stream assessment were analysed. The results of our study indicate that in all methods used, a considerable amount of sorting and identification error could be detected. This total impact is reflected in most functional metrics. In some metrics indicative of taxonomic richness, the total impact of differences is not directly reflected in differences in metric scores. The results stress the importance of implementing quality control mechanisms in macroinvertebrate assessment schemes. Peter Haase, Andrea Sundermann: These authors contributed equally to this work.  相似文献   

5.
Stream restoration researchers have a complex array of alternative assessment methodologies using macroinvertebrates. We examined sources of variation among three field sampling methods and five metrics in three networked streams impacted by a circumneutral coal mine discharge treated midway through an 11‐year study. Constructed wetlands captured the primary stressor, 700 kg iron/day. Before pollution abatement, copious iron hydroxide smothered downstream sites for decades. Two second‐order streams and one fourth‐order receiving stream, each with matching locations upstream and downstream, were monitored midsummer from 1994 to 2004. We compared taxa density (TD) (number/sample), abundance, expected taxa richness (ETR), U.S. regional pollution tolerance values (RTV), and community similarity (CS) indices from 3 to 11 replicate samples/site using grab samples (i.e. D‐nets, rock washes) and incubated leaf packs. Variation due to sampling method, metric, location, and year significantly influenced outcomes when analyzed using regression and analysis of variance. TD, RTV, and CS indicated biological recovery lagged 6 years behind chemical improvement; ETR and abundance showed more severe, persistent impairment in the two, highly impacted second‐order streams compared to the fourth‐order stream. Incubated leaf packs offered a preview of stream recovery in downstream sites, providing clean food (leaves) and substrate (mesh) and attracted more taxa and abundance than grab samples. In light of the worldwide distribution of coal mining often accompanied by metal hydroxide deposits into streams, we suggest restoration project managers use a variety of sampling methods, metrics, and models to evaluate remediation of physical as well as chemical impairment from mining.  相似文献   

6.
Böhmer  Jürgen  Rawer-Jost  Claudia  Zenker  Armin 《Hydrobiologia》2004,516(1-3):215-228
Our study attempted a new approach to biological assessment in Germany that would comply with the requirements of the European Union Water Framework Directive. We developed a multimetric index for use throughout Germany, based on the macrozoobenthos and devised along the guidelines formulated by Karr & Chu (1999). The index contains twelve measures, chosen for their discriminatory power in assessing general impairment as well as specific stressors (e.g., impoundments, acidification, organic or chemical pollution), the inclusion of all meaningful ecological metric categories, interrelationship as low as possible and the feasibility of using them in all geographic stream classes of Germany. Due to the availability of data over time the method was developed in three steps. In step 1 we studied the stressor specific response of biological attributes to additional stress by comparing each of 162 sites impaired by a known factor with a nearby site, which was morphologically comparable, but impaired to a lesser extent. The resulting list of 17 candidate metrics for a multimetric index was validated in step 2 using a set of model data from our own investigations. This step included data from not or minimally disturbed reference sites and the design of a five-class-scale of human impact to permit the use of dose-response curves, but no differentiation of stream types. The multimetric index IBI 12 was developed using dose-response curves, correlation coefficients and graphical analysis. The index was improved in the third step, calculations for this based on a dataset containing about 4000 macrozoobentos samples from over 900 streams and rivers in Germany, collected by water management authorities and researchers. The final version of the method uses type specific reference conditions, but the same set of 12 metrics for all stream types. This new IBI 12 is suitable to fulfil the requirements of the EU Water Framework Directive. It correlates with a Spearman's R of 0.76 with the general state of impairment for every stream type, and a Spearman's R between 0.6 and 0.87 with the most important specific stressors like sewage or morphological degradation. It proved to correlate higher with those stressors than any single index as yet used in Germany. The stressor specific analysis also substantiated that no single metric was really stressor specific with the exception of an acidity index. Even the well established Saprobic indices responded quite well to other stressors besides organic pollution. The results suggest that a separate assessment of specific stressors might be only possible by analysing the reaction pattern of an array of metrics. Further improvement of the index could be achieved by advances in stream typology and the reference conditions, as well as by a higher degree of standardisation to decrease the scatter caused by variations in sampling season, methodology and determination level.  相似文献   

7.
Overview and application of the AQEM assessment system   总被引:1,自引:0,他引:1  
Hering  Daniel  Moog  Otto  Sandin  Leonard  Verdonschot  Piet F.M. 《Hydrobiologia》2004,516(1-3):1-20
The main objective of the European Union (EU) funded project AQEM1was to develop a framework of an assessment system for streams in Europe based on benthic macroinvertebrates that fulfils the requirements of the EU Water Framework Directive. Initial assessment methods for 28 European stream types and more generally applicable tools for stream biomonitoring in Europe were generated. The development of the system was based on a newly collected data set covering stream types in Austria, the Czech Republic, Germany, Greece, Italy, The Netherlands, Portugal and Sweden. Altogether, 901 benthic invertebrate samples were taken using a standardised multi-habitat sampling procedure and a large number of parameters describing the streams and their catchments was recorded for all sampling sites. From the stream and catchment characteristics measures of stress were derived. A large number of metrics was tested independently for each of the stream types, to identify the response of each metric to degradation of a site. This process resulted in up to 18 core metrics for the individual stream types, which were combined into a different multimetric index in each country. The multimetric AQEM assessment system is used to classify a stream stretch into an Ecological Quality Class ranging from 5 (high quality) to 1 (bad quality) and often provides information on the possible causes of degradation. AQEM provides a taxa list of 9557 European macroinvertebrate taxa with associated autecological information, a software package for performing all the calculations necessary for applying the multimetric AQEM assessment system and a manual describing all aspects of the application of the system from site selection to data interpretation.  相似文献   

8.
Lorenz  Armin  Hering  Daniel  Feld  Christian K.  Rolauffs  Peter 《Hydrobiologia》2004,516(1-3):107-127
We developed a new Multimetric Index for stream assessment, which is mainly focussed on the impact of hydromorphological degradation on the macroinvertebrate fauna. The index was developed for five German stream types, three of which are located in the lowlands of Northern Germany and two in the lower mountainous areas. For each stream type sites representing different stages of hydromorphological degradation were investigated; the macroinvertebrate fauna of each site was sampled two or three times in 2000 (83 sites and 174 samples altogether). In addition, more than 200 parameters describing the hydromorphology of the sites have been recorded. The assessment system was developed separately for each of the stream types. The development process included (1) the generation of a new index (`German Fauna Index'), (2) the selection of faunal metrics, which correlate to hydromorphological degradation and (3) the combination of the selected metrics into a Multimetric Index. To correlate faunal metrics and hydromorphological degradation, a `Structure Index' describing the alteration of stream morphology was generated. A correlation matrix of the selected metrics and the structure index is presented. The `German Fauna Index' is based on taxa, which predominantly occur at sites of a certain morphological degradation class. The selection process of taxa included in the new index was in a first step based on data sampled in this study and supplemented by literature data. For one stream type (mid-sized mountain streams) the process of metric selection and validation is described in detail, including a correlation matrix of the metrics and a validation of the metrics with data on additional sampling sites.  相似文献   

9.
Ensuring the provision of essential ecosystem services in systems affected by multiple stressors is a key challenge for theoretical and applied ecology. Trait‐based approaches have increasingly been used in multiple‐stressor research in freshwaters because they potentially provide a powerful method to explore the mechanisms underlying changes in populations and communities. Individual benthic macroinvertebrate traits associated with mobility, life history, morphology, and feeding habits are often used to determine how environmental drivers structure stream communities. However, to date multiple‐stressor research on stream invertebrates has focused more on taxonomic than on functional metrics. We conducted a fully crossed, 4‐factor experiment in 64 stream mesocosms fed by a pristine montane stream (21 days of colonization, 21 days of manipulations) and investigated the effects of nutrient enrichment, flow velocity reduction and sedimentation on invertebrate community, taxon, functional diversity and trait variables after 2 and 3 weeks of stressor exposure. 89% of the community structure metrics, 59% of the common taxa, 50% of functional diversity metrics, and 79% of functional traits responded to at least one stressor each. Deposited fine sediment and flow velocity reduction had the strongest impacts, affecting invertebrate abundances and diversity, and their effects translated into a reduction of functional redundancy. Stressor effects often varied between sampling occasions, further complicating the prediction of multiple‐stressor effects on communities. Overall, our study suggests that future research combining community, trait, and functional diversity assessments can improve our understanding of multiple‐stressor effects and their interactions in running waters.  相似文献   

10.
Conceptually, tolerance values represent the relative capacity of aquatic organisms to survive and reproduce in the presence of known levels of stressors. Operationally, they represent the relative abundance and co-location of organisms and stressors. These numeric values are then used for calculating tolerance metrics. Defensibility of biological assessments using tolerance metrics is compromised if the origins of the tolerance values or technical foundations of metrics are unknown. To minimize circularity and maximize objectivity, we define stressed conditions using physical and chemical factors. Also, since single, isolated stressors in stream systems are rare, we used an approach that combines multiple physical and chemical characteristics into a single general stressor gradient. In this paper, we describe development of tolerance values for benthic macroinvertebrate taxa collected from 455 wadeable stream sites throughout Mississippi, USA, except the Alluvial Plain. Principal components analysis (PCA) was used to develop a gradient that incorporated direct (instream physical and chemical) and indirect (land use) stressors, which was then scaled from 0 to 10. Weighted averaging of the relative abundance of each taxon was used to assign tolerance values based on the point of greatest relative abundance along the stressor gradient. Tolerance values were derived for 324 of the 567 taxa collected from the study sites, and primarily represented sensitivity to agricultural influences including degradation of physical habitat and nutrient enrichment, the dominant stressors within the state. We suggest that this approach could be used in other areas of the country to develop new tolerance values, refine existing ones, and may be a useful approach for other taxonomic groups.  相似文献   

11.
Ants are an incredibly diverse and ubiquitous group of invertebrates in most terrestrial ecosystems. Although extensively sampled, the majority of ant inventories do not evaluate the effect of different sampling techniques in capturing nontraditional metrics of diversity. We aimed to quantify TD (taxonomic) and FD (functional) diversities for a local ant assemblage by integrating metrics and evaluating complementarity of pitfall traps and Winkler extractors for the leaf litter versus epigeic ant faunas and to determine the effect of sampling techniques on functional composition (community-weighted means of 11 morphological traits) and functional diversity (multi-trait morphospace measured with three different metrics). We sampled the local community in an Atlantic Forest fragment using week-long pitfall traps and 1m2 leaf litter samples submitted to Winkler extractors and quantified the contribution on the technique to uniquely capture the ant morphospace by applying a new index (PWindex). Although ant TD overlapped, FD was significantly affected by the sampling technique. By controlling for TD effects, the community collected by each technique was differentially structured. Higher TD did not translate into wider morphospace for Winklers. Pitfalls recovered more functionally overdispersed assemblages. Pitfalls and Winklers overlapped in the sampling of the overall community, but each sampling method contributed with a unique spectrum to the ant morphospace. Our results suggest the importance of incorporating FD metrics in local ant inventories and the importance of sampling techniques when measuring the magnitude of FD and community structure. Our PWindex further illuminates sampling effects for ant assemblages. Abstract in Portuguese & Spanish is available with online material.  相似文献   

12.
Ecosystem goods and services in streams are impaired when their biotic communities are degraded by anthropogenic stressors. An index of biotic integrity (IBI) translates community structure into a standardized ecoregion-specific stream health score. Documenting stream health is especially important in the Northern Glaciated Plains (NGP) Ecoregion, which is undergoing rapid landscape alterations through increased agriculture production. Our objectives were to develop a fish IBI and validate candidate reference sites for NGP wadeable perennial streams. Fish were sampled from 54 sites (consisting of reference sites, known-condition least and most disturbed sites, and random sites) during summers 2006–2011. Candidate metrics were sorted into nine metric classes based on attributes of fish assemblage form and function. Metric values were screened using metric range, signal-to-noise ratios, responsiveness to disturbance, and redundancy tests until each metric class contained only those metrics most responsive to anthropogenic stressors. The final IBI consisted of six metrics that were reflective of prairie stream fish assemblages, and differentiated between known-condition least and most disturbed sites. The mean reference sampling site IBI scores were found to be similar to both least and most disturbed sites (Mann–Whitney U-test; P < 0.05). Twelve reference site scores were below the NGP's median (69), whereas the other 11 sites were above the median and were representative of least disturbed conditions. We now have developed a standardized bioassessment tool for evaluating stream health, as well as a baseline for long-term monitoring in a dynamic ecoregion.  相似文献   

13.
Influence of macroinvertebrate sample size on bioassessment of streams   总被引:5,自引:5,他引:0  
In order to standardise biological assessment of surface waters in Europe, a standardised method for sampling, sorting and identification of benthic macroinvertebrates in running waters was developed during the AQEM project. The AQEM method has proved to be relatively time-consuming. Hence, this study explored the consequences of a reduction in sample size on costs and bioassessment results. Macroinvertebrate samples were collected from six different streams: four streams located in the Netherlands and two in Slovakia. In each stream 20 sampling units were collected with a pond net (25×25 cm), over a length of approximately 25 cm per sampling unit, from one or two habitats dominantly present. With the collected data, the effect of increasing sample size on variability and accuracy was examined for six metrics and a multimetric index developed for the assessment of Dutch slow running streams. By collecting samples from separate habitats it was possible to examine whether the coefficient of variation (CV; measure of variability) and the mean relative deviation from the “reference” sample (MRD; measure of accuracy) for different metrics depended only on sample size, or also on the type of habitat sampled. Time spent on sample processing (sorting and identification) was recorded for samples from the Dutch streams to assess the implications of changes in sample size on the costs of sample processing. Accuracy of metric results increased and variability decreased with increasing sample size. Accuracy and variability varied depending on the habitat and the metric, hence sample size should be based on the specific habitats present in a stream and the metric(s) used for bioassessment. The AQEM sampling method prescribes a multihabitat sample of 5 m. Our results suggest that a sample size of less than 5 m is adequate to attain a CV and MRD of ≤ 10% for the metrics ASPT (Average Score per Taxon), Saprobic Index and type Aka+Lit+Psa (%) (the percentage of individuals with a preference for the akal, littoral and psammal). The metrics number of taxa, number of individuals and EPT-taxa (%) required a multihabitat sample size of more than 5 m to attain a CV and MRD of ≤ 10%. For the metrics number of individuals and number of taxa a multihabitat sample size of 5 m is not even adequate to attain a CV and MRD of ≤ 20%. Accuracy of the multimetric index for Dutch slow running streams can be increased from ≤ 20 to ≤ 10% with an increase in labour time of 2 h. Considering this low increase in costs and the possible implications of incorrect assessment results it is recommended to strive for this ≤ 10% accuracy. To achieve an accuracy of ≤ 10% a multihabitat sample of the four habitats studied in the Netherlands would require a sample size of 2.5 m and a labour time of 26 h (excluding identification of Oligochaeta and Diptera) or 38 h (including identification of Oligochaeta and Diptera). Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

14.
15.
Family-level biotic metrics were originally designed to rapidly assess gross organic pollution effects, but came to be regarded as general measures of stream degradation. Improvements in water quality in developed countries have reignited debate about the limitations of family-level taxonomy to detect subtle change, and is resulting in a shift back towards generic and species-level analysis to assess smaller effects. Although the scale of pollution characterizing past condition of streams in developed countries persists in many developing regions, some areas are still considered to be only moderately disturbed. We sampled streams in Belize to investigate the ability of family-level macroinvertebrate metrics to detect change in stream catchments where less than 30% of forest had been cleared. Where disturbance did not co-vary with natural gradients of change, and in areas characterized by low intensity activities, none of the metrics tested detected significant change, despite evidence of environmental impacts. We highlight the need for further research to clarify the response of metrics to disturbance over a broader study area that allows replication for confounding sources of natural variation. We also recommend research to develop more detailed understanding of the taxonomy and ecology of Neotropical macroinvertebrates to improve the robustness of metric use.  相似文献   

16.
1. Biodiversity, water quality and ecosystem processes in streams are known to be influenced by the terrestrial landscape over a range of spatial and temporal scales. Lumped attributes (i.e. per cent land use) are often used to characterise the condition of the catchment; however, they are not spatially explicit and do not account for the disproportionate influence of land located near the stream or connected by overland flow. 2. We compared seven landscape representation metrics to determine whether accounting for the spatial proximity and hydrological effects of land use can be used to account for additional variability in indicators of stream ecosystem health. The landscape metrics included the following: a lumped metric, four inverse‐distance‐weighted (IDW) metrics based on distance to the stream or survey site and two modified IDW metrics that also accounted for the level of hydrologic activity (HA‐IDW). Ecosystem health data were obtained from the Ecological Health Monitoring Programme in Southeast Queensland, Australia and included measures of fish, invertebrates, physicochemistry and nutrients collected during two seasons over 4 years. Linear models were fitted to the stream indicators and landscape metrics, by season, and compared using an information‐theoretic approach. 3. Although no single metric was most suitable for modelling all stream indicators, lumped metrics rarely performed as well as other metric types. Metrics based on proximity to the stream (IDW and HA‐IDW) were more suitable for modelling fish indicators, while the HA‐IDW metric based on proximity to the survey site generally outperformed others for invertebrates, irrespective of season. There was consistent support for metrics based on proximity to the survey site (IDW or HA‐IDW) for all physicochemical indicators during the dry season, while a HA‐IDW metric based on proximity to the stream was suitable for five of the six physicochemical indicators in the post‐wet season. Only one nutrient indicator was tested and results showed that catchment area had a significant effect on the relationship between land use metrics and algal stable isotope ratios in both seasons. 4. Spatially explicit methods of landscape representation can clearly improve the predictive ability of many empirical models currently used to study the relationship between landscape, habitat and stream condition. A comparison of different metrics may provide clues about causal pathways and mechanistic processes behind correlative relationships and could be used to target restoration efforts strategically.  相似文献   

17.
《Ecological Indicators》2008,8(5):582-587
An accurate assessment of estuarine condition is critical to determining whether there has been a change from baseline or ‘natural’ conditions; benthic communities are routinely used as an ecological endpoint to make this assessment. We addressed two issues, which arise when attempting to detect differences between benthic communities. The first is the varying sensitivity of metrics, e.g. one metric may not be able to detect differences between two communities where another metric can. The second is the influence of season on the detection of differences between benthic communities from different estuarine systems. In this study, benthic communities taken from depositional sites were sampled in three seasons, at three sites within two relatively pristine estuaries located in southern Massachusetts, USA. Statistical comparisons of benthic community data from the two estuaries were made using three common metrics: species richness, Shannon diversity and Bray–Curtis similarity indices. Significant community differences were found depending upon the index. The Bray–Curtis index, using permutation testing, was the only metric that detected differences between estuaries despite disparate seasonal sampling. This suggests that researchers do not need to be overly constrained to sampling in the same season when testing for differences in benthic communities between estuaries. Additionally, we propose an analytical method to identify anthropogenically impacted estuarine systems.  相似文献   

18.
Besides pollution, lakes are affected by human alterations of lake-shore morphology. However, ecological effects of such alterations have rarely been studied systematically. Hence, we developed tools to assess the ecological effects of anthropogenic morphological alterations on European lake-shores based on pressure-specific response patterns of littoral macroinvertebrate community composition. Littoral invertebrates were sampled from 51 lakes in seven European countries. Sampling covered a range of natural to heavily morphologically degraded sites including natural shorelines, recreational beaches, ripraps and retaining walls. Biological data were supplemented by standardized morphological data that were collected via a Lake Habitat Survey (LHS) protocol and subsequently used to develop a morphological stressor index. Two biotic multimetric indices were developed based on habitat-specific samples (Littoral Invertebrate Multimetric based on HAbitat samples, LIMHA) and composite samples (Littoral Invertebrate Multimetric based on COmposite samples, LIMCO) through correlations with the morphological stressor index. Similarity analyses showed strong spatial differences in macroinvertebrate community composition between four main geographical regions, i.e. Western, Northern, Central and Southern Europe. The morphological stressor index as well as LIMCO and LIMHA have been developed for each geographical region specifically, thereby optimizing correlations of LIMCO and LIMHA with the respective morphological stressor index. The metric composition of LIMCO and LIMHA and their correlation coefficients with the morphological stressor index are comparable to existing national and regional methods that assess morphological lakeshore degradation via macroinvertebrate communities. Hence, LIMCO and LIMHA indices constitute a new stressor-specific assessment tool that enables comparable lake morphology assessment across Europe, as it has been developed involving a uniform methodology followed by regionalized optimization. These tools fulfil the standards of the EU Water Framework Directive and thus may complement existing assessment approaches used in lake monitoring focusing solely on lake eutrophication so far.  相似文献   

19.
Il’ja Krno 《Biologia》2007,62(4):446-457
A total of 57 stonefly species have been recorded in the Hron River. The natural gradient (slope and stream width) and pollution gradient of the river were defined using CCA based on physical, chemical and stonefly data. Stonefly metrics (abundance, richness/diversity, sensitivy/tolerance and functional metrics) were used to estimate the quality of the Hron River and the degree of proximity to its natural state. Similar results were obtained using two different methods. The first method was based on the homogeneity of variance and the interquartile range of different groups of stretches of the Hron River and the second was based on deviations from the expected values of biological metrics in a given stretch of the river. These values continuously decreased with increasing distance from the spring area, with the exception of the saprobic index, which increased in a downstream direction, and the stonefly average score, which did not change significantly along the whole river flow. The Stonefly Average Score (SAS) metric is universal for a variety of habitats such as the Hron River upstream and downstream, and is a reliable indicator of water quality and the natural course of a stream.  相似文献   

20.
Lake shores are characterised by a high natural variability, which is increasingly threatened by a multitude of anthropogenic disturbances including morphological alterations to the littoral zone. The European Water Framework Directive (EU WFD) calls for the assessment of lake ecological status by monitoring biological quality elements including benthic macroinvertebrates. To identify cost- and time-efficient sampling strategies for routine lake monitoring, we sampled littoral invertebrates in 32 lakes located in different geographical regions in Europe. We compared the efficiency of two sampling methodologies, defined as habitat-specific and pooled composite sampling protocols. Benthic samples were collected from unmodified and morphologically altered shorelines. Variability within macroinvertebrate communities did not differ significantly between sampling protocols across alteration types, lake types and geographical regions. Community composition showed no significant differences between field composite samples and artificially generated composite samples, and correlation coefficients between macroinvertebrate metrics calculated with both methods and a predefined morphological stressor index were similar. We conclude that proportional composite sampling represents a time- and cost-efficient method for routine lake monitoring as requested under the EU WFD, and may be applied across various European geographical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号