共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
3.
Ilka Wittig 《BBA》2009,1787(6):672-680
Mitochondrial ATP synthase is mostly isolated in monomeric form, but in the inner mitochondrial membrane it seems to dimerize and to form higher oligomeric structures from dimeric building blocks. Following a period of electron microscopic single particle analyses that revealed an angular orientation of the membrane parts of monomeric ATP synthases in the dimeric structures, and after extensive studies of the monomer-monomer interface, the focus now shifts to the potentially dynamic state of the oligomeric structures, their potential involvement in metabolic regulation of mitochondria and cells, and to newly identified interactions like physical associations of complexes IV and V. Similarly, larger structures like respiratory strings that have been postulated to form from individual respiratory complexes and their supercomplexes, the respirasomes, come into the focus. Progress by structural investigations is paralleled by insights into the functional roles of respirasomes including substrate channelling and stabilization of individual complexes. Cardiolipin was found to be important for the structural stability of respirasomes which in turn is required to maintain cells and tissues in a healthy state. Defects in cardiolipin remodeling cause devastating diseases like Barth syndrome. Novel species-specific roles of respirasomes for the stability of respiratory complexes have been identified, and potential additional roles may be deduced from newly observed interactions of respirasomes with components of the protein import machinery and with the ADP/ATP translocator. 相似文献
4.
M T Tuena Gómez-Puyou O B Martins A Gómez-Puyou 《Biochimie et biologie cellulaire》1988,66(7):677-682
A brief summary of the factors that control synthesis and hydrolysis of ATP by the mitochondrial H+-ATP synthase is made. Particular emphasis is placed on the role of the natural ATPase inhibitor protein. It is clear from the existing data obtained with a number of agents that there is no correlation between variations of the rate of ATP hydrolysis and ATP synthesis as driven by respiration. The mechanism by which each condition differentially affects the two activities is not entirely known. For the case of the natural ATPase inhibitor protein, it appears that the protein controls the kinetics of the enzyme. This control seems essential for achieving maximal accumulation of ATP during electron transport in systems that contain relatively high concentrations of ATP. 相似文献
5.
The mitochondrial ATP synthase (F(1)-F(0) complex) of Saccharomces cerevisiae is a composite of different structural and functional units that jointly couple ATP synthesis and hydrolysis to proton transfer across the inner membrane. In organello, pulse labelling and pulse-chase experiments have enabled us to track the mitochondrially encoded Atp6p, Atp8p and Atp9p subunits of F(0) and to identify different assembly intermediates into which they are assimilated. Surprisingly, these core subunits of F(0) segregated into two different assembly intermediates one of which is composed of Atp6p, Atp8p, at least two stator subunits, and the Atp10p chaperone while the second consists of the F(1) ATPase and Atp9p ring. These studies show that assembly of the ATP synthase is not a single linear process, as previously thought, but rather involves two separate but coordinately regulated pathways that converge at the end stage. 相似文献
6.
Genes for bacterial and mitochondrial ATP synthase 总被引:1,自引:0,他引:1
7.
Previous studies of the rate constants for the elementary steps of ATP hydrolysis by the soluble and membrane-bound forms of beef heart mitochondrial F1 supported the proposal that ATP is formed in high-affinity catalytic sites of the enzyme with little or no change in free energy and that the major requirement for energy in oxidative phosphorylation is for the release of product ATP.The affinity of the membrane-bound enzyme for ATP during NADH oxidation was calculated from the ratio of the rate constants for the forward binding step (k
+1) and the reverse dissociation step (k
–1).k
–1 was accelerated several orders of magnitude by NADH oxidation. In the presence of NADH and ADP an additional enhancement ofk
–1 was observed. These energy-dependent dissociations of ATP were sensitive to the uncoupler FCCP.k
+1 was affected little by NADH oxidation. The dissociation constant (K
d
ATP) increased many orders of magnitude during the transition from nonenergized to energized states. 相似文献
8.
The peripheral stalk of the mitochondrial ATP synthase 总被引:9,自引:0,他引:9
The peripheral stalk of F-ATPases is an essential component of these enzymes. It extends from the membrane distal point of the F1 catalytic domain along the surface of the F1 domain with subunit a in the membrane domain. Then, it reaches down some 45 A to the membrane surface, and traverses the membrane, where it is associated with the a-subunit. Its role is to act as a stator to hold the catalytic alpha3beta3 subcomplex and the a-subunit static relative to the rotary element of the enzyme, which consists of the c-ring in the membrane and the attached central stalk. The central stalk extends up about 45 A from the membrane surface and then penetrates into the alpha3beta3 subcomplex along its central axis. The mitochondrial peripheral stalk is an assembly of single copies of the oligomycin sensitivity conferral protein (the OSCP) and subunits b, d and F6. In the F-ATPase in Escherichia coli, its composition is simpler, and it consists of a single copy of the delta-subunit with two copies of subunit b. In some bacteria and in chloroplasts, the two copies of subunit b are replaced by single copies of the related proteins b and b' (known as subunits I and II in chloroplasts). As summarized in this review, considerable progress has been made towards establishing the structure and biophysical properties of the peripheral stalk in both the mitochondrial and bacterial enzymes. However, key issues are unresolved, and so our understanding of the role of the peripheral stalk and the mechanism of synthesis of ATP are incomplete. 相似文献
9.
《BBA》2020,1861(1):148091
F1FO ATP synthase, also known as complex V, is a key enzyme of mitochondrial energy metabolism that can synthesize and hydrolyze ATP. It is not known whether the ATP synthase and ATPase function are correlated with a different spatio-temporal organisation of the enzyme. In order to analyze this, we tracked and localized single ATP synthase molecules in situ using live cell microscopy. Under normal conditions, complex V was mainly restricted to cristae indicated by orthogonal trajectories along the cristae membranes. In addition confined trajectories that are quasi immobile exist. By inhibiting glycolysis with 2-DG, the activity and mobility of complex V was altered. The distinct cristae-related orthogonal trajectories of complex V were obliterated. Moreover, a mobile subpopulation of complex V was found in the inner boundary membrane. The observed changes in the ratio of dimeric/monomeric complex V, respectively less mobile/more mobile complex V and its activity changes were reversible. In IF1-KO cells, in which ATP hydrolysis is not inhibited by IF1, complex V was more mobile, while inhibition of ATP hydrolysis by BMS-199264 reduced the mobility of complex V. Taken together, these data support the existence of different subpopulations of complex V, ATP synthase and ATP hydrolase, the latter with higher mobility and probably not prevailing at the cristae edges. Obviously, complex V reacts quickly and reversibly to metabolic conditions, not only by functional, but also by spatial and structural reorganization. 相似文献
10.
Effect of hydrostatic pressure on the mitochondrial ATP synthase 总被引:2,自引:0,他引:2
The effects of hydrostatic pressure on three different preparations of mitochondrial H+-ATPase were investigated by studies of the hydrolytic activity, of the spectral shift and quantum yield of the intrinsic protein fluorescence, and of filtration chromatography. Both membrane-bound and detergent-solubilized forms of the mitochondrial F0-F1 complex were reversibly inactivated in the pressure range of 600-1800 bar, whereas with soluble F1-ATPase the inactivation was irreversible. Pressure inactivation of soluble F1-ATPase was facilitated by decreasing the protein concentration, indicating that dissociation is an important factor. In the presence of 30% glycerol, soluble F1-ATPase becomes inactivated by pressure in a reversible fashion, recovering the original activity. ATPase activity measured in an aqueous medium returns to the original values when incubated under high pressure in a glycerol-containing medium without substrate and is even enhanced when Mg-ATP is present. ATP hydrolysis returns to 80% of its original value in the case of the F0-F1 complex. Fluorescence studies under pressure revealed a red shift in the spectral distribution of the emission of tyrosine fluorescence of soluble F1-ATPase. A decrease in the quantum yield of intrinsic fluorescence was also observed upon subjection to pressure. The fluorescence intensity decreased monotonically as a function of pressure when the sample was in an aqueous medium, whereas it presented a biphasic behavior in a 30% glycerol medium. Gel filtration studies demonstrated that the hydrodynamic properties of the F1-ATPase are preserved if the enzyme is subjected to pressure in the presence of glycerol but they are modified when the same procedure is performed in an aqueous medium.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
We have determined the structure of intact ATP synthase from bovine heart mitochondria by electron cryomicroscopy of single particles. Docking of an atomic model of the F1-c10 subcomplex into a major segment of the map has allowed the 32 A resolution density to be interpreted as the F1-ATPase, a central and a peripheral stalk and an FO membrane region that is composed of two domains. One domain of FO corresponds to the ring of c-subunits, and the other probably contains the a-subunit, the transmembrane portion of the b-subunit and the remaining integral membrane proteins of FO. The peripheral stalk wraps around the molecule and connects the apex of F1 to the second domain of FO. The interaction of the peripheral stalk with F1-c10 implies that it binds to a non-catalytic alpha-beta interface in F1 and its inclination where it is not attached to F1 suggests that it has a flexible region that can serve as a stator during both ATP synthesis and ATP hydrolysis. 相似文献
12.
Two models exist of the mitochondrial respiratory chain: the model of a random organization of the individual respiratory enzyme complexes and that of a super-complex assembly formed by stable association between the individual complexes. Recently Sch?gger, using digitonin solubilization and Blue Native PAGE produced new evidence of preferential associations, in particular a Complex I monomer with a Complex III dimer, and suggested a model of the respiratory chain (the respirasome) based on direct electron channelling between complexes. Discrimination between the two models is amenable to kinetic testing using flux control analysis. Experimental evidence obtained in beef heart SMP, according to the extension of the Metabolic Control Theory for pathways with metabolic channelling, showed that enzyme associations involving Complex I and Complex III take place in the respiratory chain while Complex IV seems to be randomly distributed, with cytochrome c behaving as a mobile component. Flux control analysis at anyone of the respiratory complexes involved in aerobic succinate oxidation indicated that Complex II and III are not functionally associated in a stable supercomplex. A critical appraisal of the solid-state model of the mitochondrial respiratory chain requires its reconciliation with previous biophysical and kinetic evidence that CoQ behaves as a homogeneous diffusible pool between all reducing enzyme and all oxidizing enzymes: the hypothesis can be advanced that both models (CoQ pool and supercomplexes) are true, by postulating that supercomplexes physiologically exist in equilibrium with isolated complexes depending on metabolic conditions of the cell. 相似文献
13.
14.
Factor B and the mitochondrial ATP synthase complex. 总被引:2,自引:0,他引:2
Factor B is a subunit of the mammalian ATP synthase complex, whose existence has been controversial. This paper describes the molecular and functional properties of a recombinant human factor B, which when added to bovine submitochondrial particles depleted of their factor B restores the energy coupling activity of the ATP synthase complexes. The mature human factor B has 175 amino acids and a molecular mass of 20,341 Da. The preparation is water-soluble, monomeric, and is inactivated by monothiol- and especially dithiol-modifying reagents, probably reacting at its cysteine residues Cys-92 and Cys-94. A likely factor B gene composed of 5 exons has been identified on chromosome 14q21.3, and the functional role of factor B in the mammalian ATP synthase complex has been discussed. 相似文献
15.
F1F0 ATP synthase forms dimers that tend to assemble into large supramolecular structures. We show that the presence of cardiolipin is critical for the degree of oligomerization and the degree of order in these ATP synthase assemblies. This conclusion was drawn from the statistical analysis of cryoelectron tomograms of cristae vesicles isolated from Drosophila flight-muscle mitochondria, which are very rich in ATP synthase. Our study included a wild-type control, a cardiolipin synthase mutant with nearly complete loss of cardiolipin, and a tafazzin mutant with reduced cardiolipin levels. In the wild-type, the high-curvature edge of crista vesicles was densely populated with ATP synthase molecules that were typically organized in one or two rows of dimers. In both mutants, the density of ATP synthase was reduced at the high-curvature zone despite unchanged expression levels. Compared to the wild-type, dimer rows were less extended in the mutants and there was more scatter in the orientation of dimers. These data suggest that cardiolipin promotes the ribbonlike assembly of ATP synthase dimers and thus affects lateral organization and morphology of the crista membrane. 相似文献
16.
17.
《生物化学与生物物理学报:生物膜》2018,1860(2):586-599
Cardiolipin (CL) is an anionic phospholipid at the inner mitochondrial membrane (IMM) that facilitates the formation of transient non-bilayer (non-lamellar) structures to maintain mitochondrial integrity. CL modulates mitochondrial functions including ATP synthesis. However, the biophysical mechanisms by which CL generates non-lamellar structures and the extent to which these structures contribute to ATP synthesis remain unknown. We hypothesized that CL and ATP synthase facilitate the formation of non-bilayer structures at the IMM to stimulate ATP synthesis. By using 1H NMR and 31P NMR techniques, we observed that increasing the temperature (8 °C to 37 °C), lowering the pH (3.0), or incubating intact mitochondria with CTII - an IMM-targeted toxin that increases the formation of immobilized non-bilayer structures - elevated the formation of non-bilayer structures to stimulate ATP synthesis. The F0 sector of the ATP synthase complex can facilitate the formation of non-bilayer structures as incubating model membranes enriched with IMM-specific phospholipids with exogenous DCCD-binding protein of the F0 sector (DCCD-BPF) elevated the formation of immobilized non-bilayer structures to a similar manner as CTII. Native PAGE assays revealed that CL, but not other anionic phospholipids, specifically binds to DCCD-BPF to promote the formation of stable lipid-protein complexes. Mechanistically, molecular docking studies identified two lipid binding sites for CL in DCCD-BPF. We propose a new model of ATP synthase regulation in which CL mediates the formation of non-bilayer structures that serve to cluster protons and ATP synthase complexes as a mechanism to enhance proton translocation to the F0 sector, and thereby increase ATP synthesis. 相似文献
18.
A Witkowski V S Rangan Z I Randhawa C M Amy S Smith 《European journal of biochemistry》1991,198(3):571-579
The amino acid sequence of the multifunctional fatty-acid synthase has been examined to investigate the exact location of the seven functional domains. Good agreement in predicting the location of interdomain boundaries was obtained using three independent methods. First, the sites of limited proteolytic attack that give rise to relatively stable, large polypeptide fragments were identified; cryptic sites for protease attack at the subunit interface were unmasked by first dissociating the dimer into its component subunits. Second, polypeptide regions exhibiting higher-than-average rates of non-conservative mutation were identified. Third, the sizes of putative functional domains were compared with those of related monofunctional proteins that exhibit similar primary or secondary structure. Residues 1-406 were assigned to the oxoacyl synthase, residues 430-802 to the malonyl/acetyl transferase, residues 1630-1850 to the enoyl reductase, residues 1870-2100 to the oxyreductase, residues 2114-2190 to the acyl-carrier protein and residues 2200-2505 to the thioesterase. The 47-kDa transferase and 8-kDa acyl-carrier-protein domains, which are situated at opposite ends of the multifunctional subunit, were nevertheless isolated from tryptic digests as a non-covalently associated complex. Furthermore, a centrally located domain encompassing residues 1160-1545 was isolated as a nicked dimer. These findings, indicating that interactions between the head-to-tail juxtaposed subunits occur in both the polar and equatorial regions, are consistent with previously derived electron-micrograph images that show subunit contacts in these areas. The data permit refinement of the model for the fatty-acid synthase dimer and suggest that the malonyl/acetyl transferase and oxoacyl synthase of one subunit cooperate with the reductases, acyl carrier protein and thioesterase of the companion subunit in the formation of a center for fatty-acid synthesis. 相似文献
19.
20.
F. Di Rocco A. D. Zambelli L. B. Vidal Rioja 《Journal of bioenergetics and biomembranes》2009,41(3):223-228
ATP synthase is an enzyme involved in oxidative phosphorylation from prokaryotic to eukaryotic cells. In mammals it comprises
at least 16 subunits from which the mitochondrial encoded ATP6 and ATP8 are essential. Mitochondrial genes variations have
been suggested to allow rapid human and animal adaptation to new climates and dietary conditions (Mishmar et al. 2003). Camelidae taxa are uniquely adapted to extremely hot and dry climates of African-Asian territories and to cold and hypoxic environments
of the South American Andean region. We sequenced and analyzed ATP6 and ATP8 genes in all camelid species. Based on the available
structural data and evolutionary conservation of the deduced proteins we identified features proper of the group. In Old World
camels the ATP8, important in the assembly of the F0 complex, showed a number of positively charged residues higher than in
the other aligned species. In ATP6 we found the camelid specific substitutions Q47H and I106V that occur in sites highly conserved
in other species. We speculate that these changes may have functional importance. 相似文献