首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C-Phycocyanin, a biliprotein, was purified from the red alga, Cyanidium caldarium. This alga grows at temperatures up to 57 degrees C, a very high temperature for a eukaryote, and at pH values down to 0.05. Using the chromophores on C-phycocyanin as naturally occurring reporter groups, the effects of temperature on the stability of the protein were studied by circular dichroism and absorption spectroscopy. The protein was unchanged from 10 to 50 degrees C, which indicates that higher temperatures are not required to cause the protein to be photosynthetically active. At 60 and 65 degrees C, which are above the temperatures at which the alga can survive, the protein undergoes irreversible denaturation. Gel-filtration column chromatography demonstrated that the irreversibility is caused by the dissociation of the trimeric protein to its constitutive polypeptides. Upon cooling, the alpha and beta polypeptides did not reassemble to the trimer. Unlike phycocyanins 645 and 612, the C-phycocyanin does not show a reversible conformational change at moderately high temperatures. At constant temperature, the C-phycocyanin was more stable than a mesophilic counterpart. It is designated a temperature-resistant protein.  相似文献   

2.
A protease was purified from the culture medium of Clostridium botulinum serotype C strain Stockholm (C-St). The purified protease belonged to the cysteine protease family based on assays for enzyme inhibitors, activators and kinetic parameters. The protease formed a binary complex consisting of 41- and 17-kDa proteins held together non-covalently. The DNA sequence encoding the protease gene was shown to be a single open reading frame of 1593 nucleotides, predicting 530 amino acid residues including a signal peptide. The N-terminal region of the native enzyme underwent further proteolytic modification after processing by a signal peptidase. The protease introduced intermolecular cleavage into an intact single chain botulinum neurotoxin (BoNT) at a specific site. Homology modeling and docking simulation of C-St BoNT and C-St protease demonstrated that the specific nicking-site of the BoNT appears to fit into the deep pocket in the active site of the protease.  相似文献   

3.
Aspartic proteases of human malarial parasites are thought to play key roles in essential pathways of merozoite release, invasion and host cell hemoglobin degradation during the intraerythrocytic stages of their life cycle. Therefore, we have purified and characterized Plasmodium vivax aspartic protease, to determine if this enzyme can be used as potential drug target/immunogen, and its inhibitors as potential antimalarial drug. The P. vivax aspartic protease has been purified by a combination of ion exchange and size exclusion chromatographies and HPLC. Its properties were examined in order to define a role in the hemoglobin degradation process. The purified enzyme migrated as a single band on native PAGE and SDS/PAGE with a molecular mass of 40 kDa. Gelatin zymogram analyses revealed a clear zone of proteolytic activity corresponding to the band obtained on native PAGE and SDS/PAGE. The enzyme has an optimal pH of 4.0 and exhibits its highest activity at 37 degrees C. The enzyme is inhibited by pepstatin, but not by other inhibitors including o-phenanthroline, EDTA, PMSF or E-64, supporting its designation as an aspartic protease; its IC50 value was found to be 3.0 microM. A Lineweaver Burk double reciprocal plot with pepstatin shows that the inhibition is competitive with respect to the substrate. Ca2+ and Mg2+ ions enhance the protease activity, whereas Cu2+ and Hg2+ ions were found to be inhibitory. The pivotal role of aspartic protease in initiating hemoglobin degradation in P. vivax malaria parasite is also demonstrated.  相似文献   

4.
The alkaline protease gene from Aspergillus oryzae was cloned, and then it was successfully expressed in the heterologous Pichia pastoris GS115 with native signal peptide or α-factor secretion signal peptide. The yield of the recombinant alkaline protease with native signal peptide was about 1.5-fold higher than that with α-factor secretion signal peptide, and the maximum yield of the recombinant alkaline protease was 513 mg/L, which was higher than other researches. The recombinant alkaline protease was purified by ammonium sulfate precipitation, ion exchange chromatography and gel filtration chromatography. The purified recombinant alkaline protease showed on SDS–PAGE as a single band with an apparent molecular weight of 34 kDa. The recombinant alkaline protease was identical to native alkaline protease from A. oryzae with regard to molecular weight, optimum temperature for activity, optimum pH for activity, stability to pH, and similar sensitivity to various metal ions and protease inhibitors. The native enzyme retained 61.18% of its original activity after being incubated at 50 °C for 10 min, however, the recombinant enzyme retained 56.22% of its original activity with same disposal. The work demonstrates that alkaline protease gene from A. oryzae can be expressed largely in P. pastoris without affecting its enzyme properties and the recombinant alkaline protease could be widely used in various industrial applications.  相似文献   

5.
《Insect Biochemistry》1991,21(2):165-176
A lysosomal aspartic protease with cathepsin D activity, from the mosquito, Aedes aegypti, was purified and characterized. Its isolation involved ammonium sulfate (30–50%) and acid (pH 2.5) precipitations of protein extracts from whole previtellogenic mosquitoes followed by cation exchange chromatography. Purity of the enzyme was monitored by SDS-PAGE and silver staining of the gels. The native molecular weight of the purified enzyme as determined by polyacrylamide gel electrophoresis under nondenaturing conditions was 80,000. SDS-PAGE resolved the enzyme into a single polypeptide with Mr = 40,000 suggesting that it exists as a homodimer in its non-denatured state. The pI of the purified enzyme was 5.4 as determined by isoelectric focusing gel electrophoresis. The purified enzyme exhibits properties characteristic of cathepsin D. It utilizes hemoglobin as a substrate and its activity is completely inhibited by pepstatin-A and 6M urea but not by 10 mM KCN. Optimal activity of the purified mosquito aspartic protease was obtained at pH 3.0 and 45°C. With hemoglobin as a substrate the enzyme had an apparent Km of 4.2 μ M. Polyclonal antibodies to the purified enzyme were raised in rabbits. The specificity of the antibodies to the enzyme was verified by immunoblot analysis of crude mosquito extracts and the enzyme separated by both non-denaturing and SDS-PAGE. Density gradient centrifugation of organelles followed by enzymatic and immunoblot analyses demonstrated the lysosomal nature of the purified enzyme. The N-terminal amino acid sequence of the purified mosquito lysosomal protease (19 amino acids) has 74% identity with N-terminal amino acid sequence of porcine and human cathepsins D.  相似文献   

6.
Li J  Chi Z  Wang X 《Microbiological research》2010,165(3):173-182
The SAP6 gene (without signal sequence) encoding Metschnikowia reukaufii acid protease was amplified by PCR and fused to the expression vector pET-24a(+). The carboxy-terminal 6x His-tagged recombinant acid protease (rSAP6) was expressed from pET-24a(+)SAP6-6His in Escherichia coli BL21 (DE3) and purified with affinity chromatography using a Ni-NTA column. SDS-PAGE analysis and Western blotting revealed that the molecular mass of the purified rSAP6 was 54kDa. The optimal temperature and pH of the purified rSAP6 were 40 degrees C and 3.4, respectively. The enzyme was stable below 45 degrees C and between pH 2.6 and 5.0. The results show that Mn(2+) had an activating effect on the enzyme, while Cu(2+), Mg(2+), Zn(2+) and Ag(+) acted as inhibitors of the enzyme. However, Ca(2+) had no effect on the enzyme activity. The purified rSAP6 was characterized as an aspartic protease as it was inhibited by aspartic protease-specific inhibitors, such as pepstatin. It was also found that the purified rSAP6 had milk-clotting activity.  相似文献   

7.
A new member of the phycocyanin family of phycobiliproteins, R-phycocyanin II (R-PC II) has been discovered in several strains of marine Synechococcus sp. R-PC II has absorption maxima at 533 and 554 nm, a subsidiary maximum at 615 nm, and a fluorescence emission maximum at 646 nm. It is the first phycoerythrobilin (PEB)-containing phycocyanin of cyanobacterial origin. The purified protein is made up of alpha and beta subunits in equal amounts and is in an (alpha beta)2 aggregation state. The alpha and beta subunits of this protein are homologous to the corresponding subunits of previously described C- and R-phycocyanins as assessed by amino-terminal sequence determination and analyses of sequences about sites of bilin attachment. R-PC II carries phycocyanobilin (PCB) at beta-84 and PEB at alpha-84 and beta-155 (residue numbering is that for C-phycocyanin), whereas in C-phycocyanin PCB is present at all three positions. In R-phycocyanin, the bilin distribution is alpha-84 (PCB), beta-84 (PCB), beta-155 (PEB). In both R-phycocyanin and R-phycocyanin II excitation at 550 nm, absorbed primarily by PEB groups, leads to emission at 625 nm from PCB. These comparative data support the conclusion that the invariant beta-84 PCB serves as the terminal energy acceptor in phycocyanins.  相似文献   

8.
C-Phycocyanin from an acido-thermophilic eukaryotic alga, Cyanidium caldarium, was characterized with respect to subunit structure, absorption spectrum and fluorescence properties and was found to be similar to C-phycocyanins from mesophilic sources. The pH-dependence of fluorescence polarization and the changes in sedimentation velocity as a function of pH, concentration and temperature indicate the presence of extremely large amounts of unusually stable 19S aggregates. It was not possible to disaggregate this phycocyanin completely to monomer under normal conditions. The amino acid composition is similar to that of phycocyanins from other thermophilic and halophilic sources. The isoelectric point of this C-phycocyanin was 5.11, an unusually high value. The properties of this C-phycocyanin suggest an increase in protein stability as its mode of adaptation to the environmental stress of high temperature.  相似文献   

9.
A second collagenolytic serine protease has been isolated from the hepatopancreas of the fiddler crab, Uca pugilator. This enzyme cleaves the native triple helix of collagen under physiological conditions of pH, temperature, and ionic strength. In addition to its collagenolytic activity, the enzyme exhibits endopeptidase activity toward other polypeptides and small molecular weight synthetic substrates. The polypeptide bond specificity of this enzyme is similar to that of bovine trypsin as is its interaction with specific protease inhibitors. The amino-terminal sequence of this enzyme displays significant homology with other serine proteases, most notably with that of crayfish trypsin, and demonstrates that this enzyme is a member of the trypsin family of serine endopeptidases. The relatively unique action of this protease with regard to both collagenous and noncollagenous substrates has important implications concerning the specificity and mechanism of collagen degradation.  相似文献   

10.
Pest insects such as Helicoverpa spp. frequently feed on plants expressing protease inhibitors. Apparently, their digestive system can adapt to the presence of protease inhibitors. To study this, a trypsin enzyme was purified from the gut of insects that were raised on an inhibitor-containing diet. The amino-acid sequence of this enzyme was analysed by tandem MS, which allowed assignment of 66% of the mature protein amino acid sequence. This trypsin, called HzTrypsin-S, corresponded to a known cDNA sequence from Helicoverpa. The amino acid sequence is closely related (76% identical) to that of a trypsin, HzTrypsin-C, which was purified and identified in a similar way from insects raised on a diet without additional inhibitor. The digestive properties of HzTrypsin-S and HzTrypsin-C were compared. Both trypsins appeared to be equally efficient in degrading protein. Four typical plant inhibitors were tested in enzymatic measurements. HzTrypsin-S could not be inhibited by > 1000-fold molar excess of any of these. The same inhibitors inhibited HzTrypsin-C with apparent equilibrium dissociation constants ranging from 1 nm to 30 nm. Thus, HzTrypsin-S seems to allow the insect to overcome different defensive proteinase inhibitors in plants.  相似文献   

11.
嗜水气单胞菌J-1株弹性蛋白酶的表达、纯化及特性分析   总被引:1,自引:0,他引:1  
孟喜龙  刘永杰  陆承平 《微生物学报》2009,49(12):1613-1620
摘要:【目的】表达、纯化嗜水气单胞菌J-1株弹性蛋白酶,并对弹性蛋白酶的性质进行分析。【方法】以pET-32a为表达载体将弹性蛋白酶基因ahyB转化至大肠杆菌BL21菌株中进行诱导表达,表达重组酶用His TaqNi2+亲和层析柱纯化并用6 mol/L盐酸胍进行复性;利用硫酸铵分级沉淀、阴离子交换层析和分子筛层析对嗜水气单胞菌培养上清液中的弹性蛋白酶进行纯化。将【结果】从嗜水气单胞菌培养上清液中获得的弹性蛋白酶原酶的最适pH 为8.5,而表达重组酶为 10.0;对热的稳定性,原酶高于表达酶。两种形式酶的性  相似文献   

12.
Myofibril-bound serine protease (MBSP) from lizard fish (SAURIDA UNDOSQUAMIS: Synodontidae) skeletal muscle was purified to homogeneity with higher purification (1260-fold) and higher recovery (7%) than our previous report in lizard fish (Saurida wanieso). The new purification method combines a heat-treatment for dissociation from washed myofibrils, acid-treatment at pH 5.0 before and after lyophilization, and alcohol-treatment, followed by two column chromatographies. The molecular mass of the enzyme was estimated to be 50 kDa under non-reducing conditions and 28 kDa under reducing conditions by SDS-PAGE. The N-terminal amino acid sequence of the MBSP was determined to be 22 residues (IVGGYEXEAYSKPYQVSINLGY) and the sequence showed high homology to carp and other fish trypsins (64-77%), but did not show high homology to carp MBSP (41%). The enzyme activity was inhibited by serine protease inhibitors such as Pefabloc SC, leupeptin, TLCK and native protein inhibitors (soybean trypsin inhibitor, alpha(1)-antitrypsin and aprotinin). The purified enzyme specifically hydrolyzed at the carboxyl side of the arginine residue of synthetic 4-methyl-coumaryl-7-amide substrate. When purified MBSP was stored at -35 degrees C in the presence of 50% ethylene glycol (V/V), the enzyme activity was entirely preserved over 6 months and stable against freezing and thawing. Activities for both casein and the synthetic substrate were most active at pH 9.0, and the enzyme was most active approximately 55 degrees C with casein and between 35 and 45 degrees C for synthetic substrate. When myofibrils were incubated with purified MBSP, myosin heavy chain was mostly degraded approximately 55 degrees C, but the degradation of actin was very slow.  相似文献   

13.
Because the human immunodeficiency virus type 1 protease (HIV-1-PR) is an essential enzyme in the viral life cycle, its inhibition can control AIDS. The folding of single-domain proteins, like each of the monomers forming the HIV-1-PR homodimer, is controlled by local elementary structures (LES, folding units stabilized by strongly interacting, highly conserved, as a rule hydrophobic, amino acids). These LES have evolved over myriad generations to recognize and strongly attract each other, so as to make the protein fold fast and be stable in its native conformation. Consequently, peptides displaying a sequence identical to those segments of the monomers associated with LES are expected to act as competitive inhibitors and thus destabilize the native structure of the enzyme. These inhibitors are unlikely to lead to escape mutants as they bind to the protease monomers through highly conserved amino acids, which play an essential role in the folding process. The properties of one of the most promising inhibitors of the folding of the HIV-1-PR monomers found among these peptides are demonstrated with the help of spectrophotometric assays and circular dichroism spectroscopy.  相似文献   

14.
A novel psychrotrophic bacterium secreting a protease was isolated from a mountain soil in Korea. On the basis of a 16S rDNA sequence analysis and physiological properties, the isolate was identified as an Azospirillum sp. The protease purified from the culture supernatant was a monomer in its native form with an apparent molecular mass of 48.6 kDa on SDS-PAGE. The protease was active in a broad pH range around 8.5 and at temperatures up to 40 degrees C and stable at temperatures below 30 degrees C for 3 days. The proteolytic activity was inhibited by iodoacetamide and EDTA. The Mg2+ ion did not activate the enzyme much but reversed the inhibition by EDTA, suggesting that the protease belongs to a cysteine protease stabilized by the Mg2+ ion.  相似文献   

15.
Pseudomonas aeruginosa PD100 capable of producing an extracellular protease was isolated from the soil collected from local area (garbage site) from Shivage market in Pune, India. The purified protease showed a single band on native and SDS-PAGE with a molecular weight of 36 kDa on SDS-PAGE. The optimum pH value and temperature range were found to be 8 and 55–60 °C, respectively. The enzyme exhibited broad range of substrate specificity with higher activity for collagen. The enzyme was inhibited with low concentration of Ag2+, Ni2+, and Cu2+. β-Mercaptoethanol was able to inactivate the enzyme at 2.5 mM, suggesting that disulfide bond(s) play a critical role in the enzyme activity. Studies with inhibitors showed that different classes of protease inhibitors, known to inhibit specific proteases, could not inhibit the activity of this protease. Amino acid modification studies data and pKa values showed that Cys, His and Trp were involved in the protease activity. P. aeruginosa PD100 produces one form of protease with some different properties as compared to other reported proteases from P. aeruginosa strains. With respect to properties of the purified protease such as pH optimum, temperature stability with capability to degrade different proteins, high stability in the presences of detergents and chemicals, and metal ions independency, suggesting that it has great potential for different applications.  相似文献   

16.
A low molecular weight protease inhibitor peptide found in ovaries of the desert locust Schistocerca gregaria (SGPI-2), was purified from plasma of the same locust and sequenced. It was named SGCI. It was found active towards chymotrypsin and human leukocyte elastase. SGCI was synthesized using a solid-phase procedure and the sequence of its reactive site for chymotrypsin was determined. Compared with an inhibitor purified earlier from another locust species, the total sequence of SGCI showed 88% identity. In particular, the sequence of the reactive site of these inhibitors was identical. Our search for a closely related peptide in an insect species far removed from locusts, the lepidopteran Spodoptera littoralis, was unfruitful but a different chymotrypsin inhibitor, belonging to the Kazal family, was found whose mass is greater than that of SGCI (20 vs 3.6 kDa). Its N-terminal sequence shares 80% identity with that of a chymotrypsin inhibitor purified earlier from the haemolymph of another lepidopteran. Conservation of the amino acid sequence in the reactive site seems to be an exception among protease inhibitors.  相似文献   

17.
Homoserine dehydrogenase of Saccharomyces cerevisiae has been rapidly purified to homogeneity by heat and acid treatments, ammonium sulfate fractionation, and chromatography on Matrex Gel Red A and Q-Sepharose columns. The final preparation migrated as a single entity upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a Mr of 40,000. The Mr of the native enzyme was 81,000 as determined by gel filtration, suggesting that the enzyme is composed of two identical subunits. This feature was also confirmed by cross-linking analysis using the bifunctional reagent dimethyl suberimidate. Feedback inhibition by L-methionine and L-threonine was observed using the purified enzyme. The enzyme was markedly stabilized against heat treatment at high salt concentrations. Additions of feedback inhibitors or high concentrations of salts failed to cause any dissociation or aggregation of the enzyme subunits unlike enzymes from other sources such as Rhodospirillum rubrum. The enzyme denatured in 3 M guanidine-HCl was refolded by simple dilution with a concomitant restoration of the activity. Cross-linking analysis of the renaturation process suggested that the formation of the dimer is required for activity expression. Amino acid sequence analysis of peptides obtained by digestion of the enzyme protein with Achromobacter lyticus protease I revealed that several amino acid residues are strictly conserved among homoserine dehydrogenases from S. cerevisiae, Escherichia coli, and Bacillus subtilis.  相似文献   

18.
A serine protease with caspase- and legumain-like activities from basidiocarps of the edible basidiomycete Flammulina velutipes was characterized. The protease was purified to near homogeneity by three steps of chromatography using acetyl-Tyr-Val-Ala-Asp-4-methylcoumaryl-7-amide (Ac-YVAD-MCA) as a substrate. The enzyme was termed FvSerP (F. velutipes serine protease). This enzyme activity was completely inhibited by the caspase-specific inhibitor, Ac-YVAD-CHO, as well as moderately inhibited by serine protease inhibitors. Based on the N-terminal sequence, the cDNA of FvSerP was identified. The deduced protease sequence was a peptide composed of 325 amino acids with a molecular mass of 34.5 kDa. The amino acid sequence of FvSerP showed similarity to neither caspases nor to the plant subtilisin-like serine protease with caspase-like activity called saspase. FvSerP shared identity to the functionally unknown genes from class of Agaricomycetes, with similarity to the peptidase S41 domain of a serine protease. It was thus concluded that this enzyme is likely a novel serine protease with caspase- and legumain-like activities belonging to the peptidase S41 family and distributed in the class Agaricomycetes. This enzyme possibly functions in autolysis, a type of programmed cell death that occurs in the later stages of development of basidiocarps with reference to their enzymatic functions.  相似文献   

19.
20.
A new acylphosphatase from human erythrocytes was isolated by an original purification procedure. It is an isoenzyme of the well-characterized human skeletal muscle acylphosphatase. The erythrocyte enzyme shows hydrolytic activity on acyl phosphates with higher affinity than the muscle enzyme for some substrates and phosphorylated inhibitors. The sequence was determined by characterizing the peptides purified from tryptic, peptic, and Staphylococcus aureus V8 protease digests of the protein, and it was found to differ in 44% of the total positions as compared to the human muscle enzyme. About one-third of these differences are in the form of strictly conservative replacements. The protein consists of 98 amino acid residues; it has an acetylated NH2-terminus and does not contain cysteine: (sequence in text).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号