首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biotransformation of inorganic arsenic to form both methylarsinic acid (MA) and dimethylarsinic acid (DMA) has traditionally been considered as a mechanism to facilitate the detoxification and excretion of arsenic. However, the methylation of inorganic arsenic as a detoxification mechanism has been questioned due to recent studies revealing an important role of organic arsenic in the induction of genetic damage. In a previous report a reduction of DNA migration after treatment of cells with DMA was described. In order to further evaluate the possible induction of protein-DNA adducts, an experiment was performed taking into account other parameters and modifications of the standard alkaline comet assay. In addition, the results obtained with the comet assay were compared with those obtained by analyzing the induction of sister chromatid exchanges (SCEs). SCE frequencies were significantly increased in treated cells in relation to controls (p<0.001). Furthermore, in the standard alkaline comet assay, as well as in the control assay for proteinase K treatment, a significant dose-dependent reduction in tail moment was observed. Nevertheless, the post-treatment with proteinase K induced the release of proteins joined to the DNA and consequently, a dose-dependent increment in DNA migration was observed (p<0.001). These results suggest that DNA-protein cross-links may be an important genotoxic effect induced by dimethylarsinic acid in human MRC-5 cells.  相似文献   

2.
The DNA lesions responsible for the formation of sister chromatid exchanges (SCEs) have been the object of research for a long time. SCEs can be visualized by growing cells for either two rounds of replication in the presence of 5-bromo-2'-deoxyuridine (BrdU) or for one round with BrdU and the next without. If BrdU is added after cells were treated with a DNA-damaging agent, the effect on SCEs can only be analyzed in the second post-treatment mitosis. If one wishes to analyze the first post-treatment mitosis, cells unifilarily labeled with BrdU must be treated. Due to the highly reactive bromine atom, BrdU interacts with such agents like ionizing and UV radiation enhancing the frequency of SCEs. However, its precise role in this process was difficult to assess for a long time, because no alternative technique existed that allowed differential staining of chromatids. We have recently developed a method to differentially label sister chromatids with biotin-16-2'-deoxyuridine-5'-triphosphate (biotin-dUTP) circumventing the disadvantage of BrdU. This technique was applied to study the SCEs induced by ionizing and UV radiation as well as by mitomycin C, DNaseI and AluI. This article is a review of the results and conclusions of our previous studies.  相似文献   

3.
The incidence of sister chromatid exchange was determined in human leucocyte cultures treated with methylazoxymethanol acetate. In all individuals examined, treated cultures manifested a significantly higher frequency of sister chromatid exchanges than controls. Two concentrations of MAM AC were tested in blood cultures from nine individuals. The concentrations varied from individual to individual since they were determined by means of individual dose-response curves, which involved [3H]-thymidine incorporation in PHA-stimulated short-term lymphocyte cultures versus MAM AC contraction. The lower concentration was less than the TD50 dose. Compared to control cultures, the lower concentration caused a higher incidence of sister chromatid exchange in eight of nine individuals. The cumulative mean value for all control cultures was 5.32 exchanges per cell while that for cultures treated with the higher concentration was 10.73.  相似文献   

4.
Cells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we analyzed the effect of mRAD54, a gene involved in homologous recombination, on the repair of a site-specific I-SceI-induced DSB located in a repeated DNA sequence in the genome of mouse embryonic stem cells. We used six isogenic cell lines differing solely in the orientation of the repeats. The combination of the three recombination-test substrates used discriminated among SSA, intrachromatid gene conversion, and sister chromatid gene conversion. DSB repair was most efficient for the substrate that allowed recovery of SSA events. Gene conversion with crossover, indistinguishable from long tract gene conversion, preferentially involved the sister chromatid rather than the repeat on the same chromatid. Comparing DSB repair in mRAD54 wild-type and knockout cells revealed direct evidence for a role of mRAD54 in DSB repair. The substrate measuring SSA showed an increased efficiency of DSB repair in the absence of mRAD54. The substrate measuring sister chromatid gene conversion showed a decrease in gene conversion with and without crossover. Consistent with this observation, DNA damage-induced sister chromatid exchange was reduced in mRAD54-deficient cells. Our results suggest that mRAD54 promotes gene conversion with predominant use of the sister chromatid as the repair template at the expense of error-prone SSA.  相似文献   

5.
Liaw H  Lee D  Myung K 《PloS one》2011,6(6):e21424
Hyperphosphorylation of RPA2 at serine 4 and serine 8 (S4, S8) has been used as a marker for activation of the DNA damage response. What types of DNA lesions cause RPA2 hyperphosphorylation, which kinase(s) are responsible for them, and what is the biological outcome of these phosphorylations, however, have not been fully investigated. In this study we demonstrate that RPA2 hyperphosphorylation occurs primarily in response to genotoxic stresses that cause high levels of DNA double-strand breaks (DSBs) and that the DNA-dependent protein kinase complex (DNA-PK) is responsible for the modifications in vivo. Alteration of S4, S8 of RPA2 to alanines, which prevent phosphorylations at these sites, caused increased mitotic entry with concomitant increases in RAD51 foci and homologous recombination. Taken together, our results demonstrate that RPA2 hyperphosphorylation by DNA-PK in response to DSBs blocks unscheduled homologous recombination and delays mitotic entry. This pathway thus permits cells to repair DNA damage properly and increase cell viability.  相似文献   

6.
Utilizing the differential staining of chromatids containing BUdR, it was demonstrated that frequencies of mitomycin-C induced sister chromatid exchanges decline with age. The concomitant increase in chromosomal aberrations suggest an altered response to DNA damage with aging.  相似文献   

7.
Dose dependencies of the induction of sister chromatid exchanges (SCEs) and chromosome aberrations were studied under in vivo exposure of mouse bone marrow cells to 5 alkylating agents. The efficacy of the induction of SCEs for all the substances was 20 to 60 times higher than that of the induction of chromosome aberrations. It was demonstrated that SCEs induced by chemical mutagens in vivo and in vitro are more sensitive tests than chromosome aberrations.  相似文献   

8.
The data on the dose dependencies of the induction of sister chromatid exchanges (SCE) and chromosomal aberrations during exposure of mouse bone marrow cells in vivo to 5 alkylating substances are provided. The efficacy of SCE induction was found to be higher than that of chromosomal aberrations. It was established that SCE induced by chemical mutagens in vivo and in vitro are more sensitive and stable tests than chromosomal aberrations.  相似文献   

9.
Sister chromatid exchange (SCE) in blood lymphocytes was determined in 32 male workers occupationally exposed to lead (Pb) and zinc (Zn) and in 20 controls matched for age and smoking habits. Exposed workers have higher SCE mean values than control workers (p < 0.01). In exposed persons, blood Pb concentrations were also significantly higher than controls (p < 0.0001), but the difference between Zn levels in the blood of these groups was not found to be significant (p > 0.05). Our results indicate that Pb may be genotoxic and harmful to human health.  相似文献   

10.
We conducted the recombination and sister chromatid exchange (SCE) assays with five chemicals (hydroxyurea (HU), resveratrol, 4-hydroxy-trans-stilbene, 3-hydroxy-trans-stilbene, and mitomycin C) in Chinese hamster cell line SPD8/V79 to confirm directly that SCE is a result of homologous recombination (HR). SPD8 has a partial duplication in exon 7 of the endogenous hprt gene and can revert to wild type by homologous recombination. All chemicals were positive in both assays except for 3-hydroxy-trans-stilbene, which was negative in both. HU, resveratrol, and 4-hydroxy-trans-stilbene were scavengers of the tyrosyl free radical of the R2 subunit of mammalian ribonucleotide reductase. Tyrosyl free radical scavengers disturb normal DNA replication, causing replication fork arrest. Mitomycin C is a DNA cross-linking agent that also causes replication fork arrest. The present study suggests that replication fork arrest, which is similar to the early phases of HR, leads to a high frequency of recombination, resulting in SCEs. The findings show that SCE may be mediated by HR.  相似文献   

11.
Recombinational DNA repair and sister chromatid exchanges   总被引:2,自引:0,他引:2  
We show that a recombinational repair mechanism for DNA lesions can be expected to produce exactly the types of exceptions to the usually observed semiconservative segregation of newly synthetized DNA that have been reported in the literature. This removes the obstacles their occurrence appearance to present to the interpretation that the eukaryote chromosome is mononeme, containing but a single DNA double helix prior to replication. We further note that such a recombinational repair system would generate single sister chromatid exchange (SCE) events but not twin SCE events. This, along with other factors, complicates the interpretation of single: twin ratios in terms of any particular model of eukaryote chromosome structure.  相似文献   

12.
Thiophosphamide (T) was i.v. administered into New Zealand rabbit (4 mg/kg). The rate of SCE in blood lymphocytes was increased up to 21st day after T administration. There are two phases in dynamics curve of SCE--a rapid phase and a slow one. The rapid decrease of SCE's rate depends on cell mortality. The slow decrease of SCE rate is connected with reparation of chromosome damages and selection of cells in lymphopoietic tissue. It was demonstrated that the special class of cells with intermediate number of SCE exists in blood after T administration.  相似文献   

13.
Escherichia coli has provided an important model system for understanding the molecular basis for genetic instabilities associated with repeated DNA. Changes in triplet repeat length during growth following transformation in E. coli have been used as a measure of repeat instability. However, very little is known about the molecular and biological changes that may occur on transformation. Since only a small proportion of viable cells become competent, uncertainty exists regarding the nature of these transformed cells. To establish whether the process of transformation can be inherently mutagenic for certain DNA sequences, we used a genetic assay in E. coli to compare the frequency of genetic instabilities associated with transformation with those occurring in plasmid maintained in E. coli. Our results indicate that, for certain DNA sequences, bacterial transformation can be highly mutagenic. The deletion frequency of a 106 bp perfect inverted repeat is increased by as much as a factor of 2 x 10(5) following transformation. The high frequency of instability was not observed when cells stably harboring plasmid were rendered competent. Thus, the process of transformation was required to observe the instability. Instabilities of (CAG).(CTG) repeats are also dramatically elevated upon transformation. The magnitude of the instability is dependent on the nature and length of the repeat. Differences in the methylation status of plasmid used for transformation and the methylation and restriction/modification systems present in the bacterial strain used must also be considered in repeat instability measurements. Moreover, different E. coli genetic backgrounds show different levels of instability during transformation.  相似文献   

14.
BrdU (5-bromodeoxyuridine)-33258 Hoechst methods have been adapted for in vivo analyses of replication kinetics, sister chromatid differentiation and sister chromatid exchange (SCE) formation in mice. Sufficient in vivo BrdU substitution for cytological detection was effected with multiple intraperitoneal injections of the analogue. The combination of centromere staining asymmetry and sister chromatid differentiation at metaphase permits unambiguous determination of the number of replications in BrdU and dT (deoxythymidine) undergone by individual cells. Late-replicating regions in marrow and spermatogonial chromosomes are highlighted by bright fluorescence after sequential incorporation of BrdU followed by dT during a single DNA synthesis period. SCEs are analyzed in marrow and spermatogonial metaphases after successive complete cycles of BrdU and dT incorporation. Significant induction of SCE was observed with both mitomycin C and cyclophosphamide; the latter drug requires host-mediated activation to be effective. In meiotic metaphase cells harvested two weeks after BrdU incorporation, satellite DNA asymmetry, sister chromatid differentiation and SCE could be detected in a few chromosomes, most frequently the X and the Y.  相似文献   

15.
Raposo A  Carvalho CR  Otoni WC 《Hereditas》2004,141(3):318-322
The present study reports the use of the fluorescence plus Giemsa (FPG) technique, image analysis and statistical methods to assess the sister chromatid exchanges (SCEs) frequency in maize. Roots derived from germinated maize seeds were treated with BrdU solution and fixed. The slides were prepared by enzymatic cellular dissociation, air-drying technique, stained with Hoechst 33258 fluorochrome, and incubated in salt solution. The chromosomes were irradiated with ultraviolet light and stained with Giemsa solution. The FPG technique associated with digital analysis system was used to measure the length of 597 BrdU-incorporated maize chromosomes and to identify 0.5243 SCE per chromosome. A range from 0 to 4 SCE events were classified and the chi-square test (chi2=1.586, P=0.662) showed a good fit to the hypothesis that the SCEs are independent and random events that follow Poisson distribution. The SCE frequencies in long and short chromosome arms corresponded to a mean value of 0.876 SCE microm(-1). Considering that the maize line used in this study contains 5.78 picogram (pg) DNA (2C value) in interphasic G0/G1 nuclei or 11.56 pg DNA (4C value) in metaphase, and that the DNA mean value corresponds to 0.578 pg/metaphasic chromosome, the analysis suggests an occurrence of approximately 0.9 SCE/pg DNA.  相似文献   

16.
Spontaneous and mutagen-induced sister-chromatid exchange frequencies have been studied in the peripheral blood lymphocytes of 6 patients with motor neurone disease. Their values were compared with those obtained in age- and sex-matched healthy controls. No significant differences were observed between the 2 groups. These results do not support the hypothesis of a defect in the repair of DNA damage as the primary abnormality in the development of the disease.  相似文献   

17.
The mutation in hypoxanthine phosphoribosyl transferase gene and the induction of sister chromatid exchange (SCE) were comparatively studied treating Chinese hamster ovary cells with the mutagens ethylmethanesulphonate. N-methyl-N'-nitro-N-nitrosoguanidine, Mitomycin C and X-ray. All the agents exerted strong mutagenic effects and showed a dose-dependent relationship for the induction of SCEs.  相似文献   

18.
19.
An unequal sister chromatid exchange (USCE) in the mouse myeloma cell line MPC-11 between 3' regions of the C gamma 2a and C gamma 2b heavy chain genes results in duplication of the C gamma 2a heavy chain gene and generation of a novel recombination joint. The USCE occurs between (TC)n tracts adjacent to alternating purine-pyrimidine tracts. We have investigated the capacity of both the donor regions and the recombinant product involved in this event to adopt left-handed Z-DNA and intramolecular triplexes. The results of chemical probing with diethylpyrocarbonate and osmium tetroxide at the base pair level demonstrate that under the influence of negative supercoiling the alternating purine-pyrimidine regions of these plasmids can adopt Z-DNA at neutral pH, and the oligopurine.oligopyrimidine (pur.pyr) regions of these regions can adopt intramolecular triplexes at low pH (less than or equal to pH 6.0). At intermediate pH values, mixtures of both structures are present. Increasing the negative superhelical density of the plasmid does not increase the amount of triplex present at neutral pH indicating that the presence of long Z-DNA segments adjacent to pur.pyr tract prevents intramolecular triplex formation. In summary, we conclude that the sequences involved in the USCE can form either an intramolecular triplex in the (TC)n tract or Z-DNA in the alternating purine-pyrimidine tract and that Z-DNA will predominate under physiological conditions. The presence of segments which adopt Z-DNA at a site of USCE suggests that formation of this structure may enhance recombination between adjacent pur.pyr tracts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号