首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vasoconstriction induced by sympathetic nerve stimulation and by norepinephrine infusion in the superior mesenteric artery of cats anesthetized with pentobarbital was inhibited by adenosine infusions in a dose-related way. The responses to nerve stimulation were not inhibited to a greater extent than the responses to norepinephrine, thus suggesting no presynaptic modulation of sympathetic nerves supplying the resistance vessels of the feline intestinal vascular bed. Blockade of adenosine receptors using 8-phenyltheophylline did not alter the degree of constriction induced by nerve stimulation or norepinephrine infusion, indicating that in the fasted cat, endogenous adenosine co-released or released subsequent to constriction does not affect the peak vasoconstriction reached. Isoproterenol caused similar degrees of vasodilation as adenosine but did not show significant antagonism of the pooled responses to nerve stimulation or norepinephrine infusion; there was no tendency for the degree of dilation induced by isoproterenol to correlate with the inhibition of constrictor responses. Thus, the effect of adenosine on nerve- and norepinephrine-induced constriction is not secondary to nonspecific vasodilation.  相似文献   

2.
3.
Rats with chronic nucleus of the solitary tract lesions (NTS-X) drink water and release vasopressin (VP) in response to reduced blood volume despite an absence of neural signals from cardiac and arterial baroreceptors. The present study determined whether rats with NTS-X have a greater sensitivity to circulating ANG II, which may contribute to the drinking and VP responses to hypovolemia. In conscious control rats and rats with NTS-X, ANG II was infused intravenously for 1 h at 10, 100, or 250 ng. kg(-1). min(-1). At the two higher doses, ANG II stimulated more water intake with a shorter latency to drink in rats with NTS-X than in control rats. In contrast, infusion of ANG II produced comparable increases in plasma VP in the two groups. At the two higher doses, ANG II produced an enhanced increase in arterial pressure (AP) in rats with NTS-X, and the bradycardia seen in control rats was reversed to a tachycardia. Infusion of hypertonic saline, which did not alter AP or heart rate, produced comparable drinking and VP release in the two groups. These results demonstrate that chronic NTS-X increases the dipsogenic response of rats to systemic ANG II but has no effect on ANG II-induced VP release or the osmotic stimulation of these responses.  相似文献   

4.
5.
Insulin-like growth factor-1 (IGF-1) has many insulin-like activities, including stimulation of glucose uptake in skeletal muscle. However, those with diabetes or chronic liver disease are insulin resistant but show a normal hypoglycemic response to IGF-1. We have previously shown that insulin sensitivity depends on a hepatic parasympathetic reflex release of a hormone from the liver. The hypothesis was tested that insulin action, but not IGF-1 action, is dependent on the hepatic parasympathetic reflex. Glucose disposal in response to three doses of IGF-1 (25, 100, 200 microg/kg) was determined in rats. IGF-1 at 200 microg/kg had similar effect on glucose disposal as did 50 mU/kg of insulin. Interruption of the hepatic parasympathetic reflex either by surgical ablation of the anterior nerve plexus or by atropine (1.0 mg/kg) resulted in insulin, but not IGF-1, resistance. Sixteen hours of fasting resulted in insulin, but not IGF-1, resistance. In conclusion, insulin, but not IGF-1, triggers the hepatic parasympathetic dependent release of a putative hepatic insulin sensitizing substance (HISS) that stimulates glucose uptake in skeletal muscle.  相似文献   

6.
Portal glucose delivery enhances net hepatic glucose uptake (NHGU) relative to peripheral glucose delivery. We hypothesize that the sympathetic nervous system normally restrains NHGU, and portal glucose delivery relieves the inhibition. Two groups of 42-h-fasted conscious dogs were studied using arteriovenous difference techniques. Denervated dogs (DEN; n=10) underwent selective sympathetic denervation by cutting the nerves at the celiac nerve bundle near the common hepatic artery; control dogs (CON; n=10) underwent a sham procedure. After a 140-min basal period, somatostatin was given along with basal intraportal infusions of insulin and glucagon. Glucose was infused peripherally to double the hepatic glucose load (HGL) for 90 min (P1). In P2, glucose was infused intraportally (3-4 mg.kg(-1).min(-1)), and the peripheral glucose infusion was reduced to maintain the HGL for 90 min. This was followed by 90 min (P3) in which portal glucose infusion was terminated and peripheral glucose infusion was increased to maintain the HGL. P1 and P3 were averaged as the peripheral glucose infusion period (PE). The average HGLs (mg.kg(-1).min(-1)) in CON and DEN were 55+/-3 and 54+/-4 in the peripheral periods and 55+/-3 and 55+/-4 in P2, respectively. The arterial insulin and glucagon levels remained basal in both groups. NHGU (mg.kg(-1).min(-1)) in CON averaged 1.7+/-0.3 during PE and increased to 2.9+/-0.3 during P2. NHGU (mg.kg(-1).min(-1)) was greater in DEN than CON (P<0.05) during PE (2.9+/-0.4) and failed to increase significantly (3.2+/-0.2) during P2 (not significant vs. CON). Selective sympathetic denervation increased NHGU during hyperglycemia but significantly blunted the response to portal glucose delivery.  相似文献   

7.
In cirrhosis, hepatic venous pressure gradient is used to measure portal venous and sinusoidal pressures, as well as drug-induced decreases of elevated pressures. The aim of this study was to investigate the influence of hepatic arterial flow (HAF) changes on portal venous perfusion (PVPP) and wedged hepatic venous pressure (WHVP). Normal and CCl4-cirrhotic rats were subjected to a bivascular liver perfusion with continuous measurements of PVPP, WHVP, and hepatic arterial perfusion pressure. Flow-pressure curves were performed with the use of different flows either through the portal vein (PVF: 20-32 ml/min) or HAF (5-15 ml/min). Increases in HAF lead to significant absolute and relative increases in PVPP (P = 0.002) and WHVP (P < 0.001). Absolute changes in HAF correlated to absolute changes in PVPP (cirrhosis: r = 0.64, P < 0.001; control: r = 0.67, P < 0.001) and WHVP (cirrhosis: r = 0.71, P < 0.001; control: r = 0.82, P < 0.001). Changes in PVPP correlated to changes in WHVP due to changes in PVF only in cirrhosis (r = 0.75, P < 0.001), whereas changes in HAF correlated in both cirrhosis (r = 0.92, P < 0.001) and control (r = 0.77, P < 0.001). In conclusion, increases and decreases in HAF lead to respective changes in PVPP and WHVP. This suggests a direct influence of HAF on PVPP and WHVP most likely due to changes in sinusoidal perfusion.  相似文献   

8.
Vasopressin (VP) and angiotensin II (AT II) stimulate the production of inositol phosphates (IP) in rat glomerulosa cells. Guanosine 5'-[gamma-thio]triphosphate (GTP[S]), but not VP or AT II, stimulates IP production in a myo-[3H]inositol-prelabelled glomerulosa-cell membrane preparation. In combination with GTP[S], these hormones potentiate the response to GTP[S], indicating the existence of a G-protein involved in the coupling of the VP and AT II receptor with the phospholipase C. ADP-ribosylation with pertussis toxin (IAP) revealed the specific labelling of a single molecule of 41 kDa. No significant inhibition of VP- or AT II-stimulated IP accumulation was detected in intact cells when the whole 41 kDa molecule was endogenously ADP-ribosylated by IAP treatment. On the contrary, when glomerulosa cells were infected with cholera toxin (CT), both the VP- and AT II-stimulated IP accumulations were inhibited in a dose-dependent manner. Yet these effects were partial even at high concentrations of CT, and could not be related to the ADP-ribosylation of 'alpha s' molecules. Similarly, when the cells were infected with 1 microgram of CT/ml, the specific binding of VP and AT II decreased by 50-60%. Such results may signify that the treatment primarily affects the densities of the hormone receptors. When glomerulosa cells were incubated for 15 h in the presence of 10 nM-corticotropin (ACTH), a condition in which the intracellular concentration of cyclic AMP was increased 3-fold, the maximum IP response to 0.1 microM-VP or -AT II was decreased by 50%. When similar experiments were carried out only after a 15 min incubation period with the same concentration of ACTH, the increase in cyclic AMP was more pronounced, but no inhibition of hormone-induced IP accumulation was observed. Altogether, these results may suggest that CT exerts its action on the VP- or AT II-sensitive phospholipase C systems via a prolonged increase in intracellular cyclic AMP.  相似文献   

9.
The effect of taurine on rat and hamster brain Na,K-ATPase was examined and compared to norepinephrine (NE) stimulation of the enzyme. Although NE stimulation of microsomal Na,K-ATPase was observed in the presence of the cell cytosolic fraction, taurine was without effect in the presence and absence of this fraction. Taurine also failed to modulate pubescent and mature hamster brain Na,K-ATPase. Presence or absence of ion chelators did not change taurine's effect. These results are discussed in relation to previous reports of taurine and catecholamine stimulation of Na,K-ATPase.  相似文献   

10.
Multiple hypothalamic factors seem to influence ACTH release. In vitro and/or in vivo animal models have shown that angiotensin II, vasopressin and some of its analogs are ACTH secretagogues capable of potentiating the corticotropin releasing activity of CRF41. Since these effects are controversial in man, we investigated in 3 groups of volunteers the corticotropin releasing activity of a 2h-infusion of angiotensin II (7 ng/kg/min), vasopressin (1 ng/kg/min) and desmopressin (1 ng/kg/min) given alone or in combination with a bolus injection of 100 micrograms CRF41 by measuring plasma concentrations of ACTH, cortisol, dehydroepiandrosterone and delta 4-androstenedione. Given alone angiotensin II and desmopressin had no significant effect in contrast to vasopressin which increased significantly the ACTH and steroid levels. Angiotensin II and vasopressin were both able to potentiate the corticotropin releasing activity of CRF41, whereas desmopressin was unable to produce such a potentiation. These results suggest that in man vasopressin and angiotensin II may well regulate the responsiveness of the pituitary-adrenal axis in various physiological or pathophysiological situations.  相似文献   

11.
We examined the role of efferent neural signaling in regulation of net hepatic glucose uptake (NHGU) in two groups of conscious dogs with hollow perfusable coils around their vagus nerves, using tracer and arteriovenous difference techniques. Somatostatin, intraportal insulin and glucagon at fourfold basal and basal rates, and intraportal glucose at 3.8 mg.kg(-1).min(-1) were infused continuously. From 0 to 90 min [period 1 (P1)], the coils were perfused with a 37 degrees C solution. During period 2 [P2; 90-150 min in group 1 (n = 3); 90-180 min in group 2 (n = 6)], the coils were perfused with -15 degrees C solution to eliminate vagal signaling, and the coils were subsequently perfused with 37 degrees C solution during period 3 (P3). In addition, group 2 received an intraportal infusion of norepinephrine at 16 ng.kg(-1).min(-1) during P2. The effectiveness of vagal suppression was demonstrated by the increase in heart rate during P2 (111 +/- 17, 167 +/- 16, and 105 +/- 13 beats/min in group 1 and 71 +/- 6, 200 +/- 11, and 76 +/- 6 beats/min in group 2 during P1-P3, respectively) and by prolapse of the third eyelid during P2. Arterial plasma glucose, insulin, and glucagon concentrations; hepatic blood flow; and hepatic glucose load did not change significantly during P1-P3. NHGU during P1-P3 was 2.7 +/- 0.4, 4.1 +/- 0.6, and 4.0 +/- 1.2 mg.kg(-1).min(-1) in group 1 and 5.0 +/- 0.9, 5.6 +/- 0.7, and 6.1 +/- 0.9 mg.kg(-1).min(-1) in group 2 (not significant among periods). Interruption of vagal signaling with or without intraportal infusion of norepinephrine to augment sympathetic tone did not suppress NHGU during portal glucose delivery, suggesting the portal signal stimulates NHGU independently of vagal efferent flow.  相似文献   

12.
13.
14.
The present study sought to determine whether an acute increase in arterial blood pressure (ABP) reduces plasma vasopressin (VP) levels stimulated by ANG II or hyperosmolality. During an intravenous infusion of ANG II (100 ng.kg(-1).min(-1)), attenuation of the ANG II-evoked increase in ABP with diazoxide or minoxidil did not further enhance plasma VP levels in rats. When VP secretion was stimulated by an infusion of hypertonic saline, coinfusion of the alpha-adrenergic agonist phenylephrine (PE) significantly increased ABP but did not reduce plasma VP levels. In fact, plasma VP levels were enhanced. The enhancement of plasma VP levels cannot be explained by a direct stimulatory action of PE, as plasma VP levels of isosmotic rats did not change during a similar infusion of PE. An infusion of endothelin-1 in hyperosmotic rats significantly raised ABP but did not reduce plasma VP levels; rather, VP levels increased as observed with PE. In alpha-chloralose-anesthetized rats infused with hypertonic saline, inflation of an aortic cuff to increase ABP and stimulate arterial baroreceptors did not reduce plasma VP levels. In each experiment, plasma oxytocin levels paralleled plasma VP levels. Collectively, the present findings suggest that an acute increase in ABP does not inhibit VP secretion.  相似文献   

15.
16.
17.
Effects of phenylephrine, vasopressin and angiotensin II on cytoplasmic free calcium concentration, [Ca2+]c, were examined by monitoring aequorin bioluminescence in isolated hepatocytes preloaded with aequorin. In the presence of 0.5 mM calcium in the medium, the pattern of changes in aequorin bioluminescence induced by phenylephrine was different from that induced by vasopressin or angiotensin II. When extracellular calcium concentration was reduced to 1 microM, however, these three agents induced identical changes in aequorin bioluminescence. These results suggest that the mode of action of phenylephrine on cytoplasmic free calcium concentration differs from that of either vasopressin or angiotensin II and that the difference in ability to increase calcium influx may account for the distinct patterns induced by these agents.  相似文献   

18.
19.
After a single dose in mice, MPTP-N-oxide caused a dose-dependent depletion of cardiac norepinephrine which was similar although less pronounced than that caused by MPTP itself. After repeated daily doses, MPTP-N-oxide depleted cardiac norepinephrine, but did not deplete norepinephrine in the frontal cortex or dopamine in the striatum of mice. MPTP-N-oxide differed from MPTP, which depleted cardiac norepinephrine, cortical norepinephrine and striatal dopamine after repeated daily doses, but was similar to MPP+, another metabolite of MPTP, which depleted only cardiac norepinephrine. These data suggest that MPTP-N-oxide may contribute to the peripheral catecholamine-depleting effects after MPTP injection.  相似文献   

20.
In hepatocytes isolated from fasted rats, vasopressin and angiotensin II stimulate the rate of gluconeogenesis from lactate or pyruvate in a Ca2+-dependent manner similar to that previously reported for norepinephrine. Actions of the peptide hormones on gluconeogenesis from glycerol or sorbitol, reduced substrates that require oxidation before they enter the gluconeogenic pathway at triosephosphate, also resemble those of norepinephrine. Stimulation of glucose production from these substrates is observed only in the presence of extracellular Ca2+. Actions of the peptide hormones on gluconeogenesis from dihydroxyacetone or fructose, the oxidized counterparts of glycerol and sorbitol, respectively, do not resemble those of norepinephrine. While norepinephrine enhances rates of glucose production from dihydroxyacetone or fructose in the absence of extracellular Ca2+, vasopressin and angiotensin II are ineffective either in the absence or presence of extracellular Ca2+. When the oxidation-reduction state in hepatocytes metabolizing dihydroxyacetone is altered by adding an equimolar concentration of ethanol (to provide cytosolic reducing equivalents), the results are similar to those obtained when cells are incubated with the reduced counterpart of dihydroxyacetone, glycerol, i.e., the peptide hormones cause an apparent increase in the rate of glucose production in a Ca2+-dependent manner. If, on the other hand, hepatocytes are incubated with glycerol or sorbitol and an equimolar concentration of pyruvate (to provide a cytosolic hydrogen acceptor), the peptide hormones, unlike norepinephrine, are ineffective in stimulating gluconeogenesis in the absence of extracellular Ca2+. These results indicate that whereas many of the actions of vasopressin and angiotensin II are similar to those of alpha 1-adrenergic agents, there are major differences in the manner in which the hormones act at various sites to regulate gluconeogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号