首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deletions in the plasmid pMC874 take place in resting cells incubating on McConkey's or minimal lactose agar and are time rather than generation dependent. These deletions join the km(r) promoter to a promoterless lac operon giving rise to Lac(+) papillae on McConkey's lactose agar, and can occur in the absence of sequence homologies such as direct or inverted repeats. Using this as a selective screen we isolated 31 mutants designated dli (for deletion increase), which enhanced to different extents the frequency of this unusual class of deletions. Six of these were characterized by phenotypic tests and their ability to stimulate other deletion events such as the excision of Tn10 from various chromosomal sites and the loss of cloned fragments between two EcoR1 sites in the gene for chloramphenicol resistance (cat) of plasmid pBR325. Two of them showed contrasting phenotypes and were studied further: one (dli1) stimulated Lac(+) deletions in pMC874 in resting cells but not Tn10 excision from chromosomal locations in log phase cells, and the other one (dli2) did exactly the reverse, i.e. it enhanced Tn10 excision but not Lac(+) deletion incidence. Mapping and complementation tests showed that dli1 is a null mutation in recC and was renamed recC2251. This is strong evidence that resting phase deletions in pMC874 are stimulated by the absence of a functional RecBCD enzyme. The dli2 mutation was identified by mapping and phenotypic tests as a mutation in uvrD, the gene for helicase II, and it was tentatively designated uvrD(-)dli2. These results show that (1) pMC874 is an excellent system to select mutants for genetic functions involved in the generation of resting phase deletions, and (2) there are at least two major deletion pathways in E. coli, one active in resting and the other in actively dividing cells.  相似文献   

2.
Although Escherichia coli is well studied and various recombinant E. coli protein expression systems have been developed, people usually consider the rapid growing (log phase) culture of E. coli as optimum for production of proteins. However, here we demonstrate that at stationary phase three E. coli systems, BL21 (DE3)(pET), DH5alpha (pGEX) induced with lactose, and TG1 (pBV220) induced with heat shock could overexpress diversified genes, including three whose products are deleterious to the host cells, more stably and profitably than following the log phase induction protocol. Physical and patch-clamp assays indicated that characteristics of target proteins prepared from cultures of the two different growth phases coincide. These results not only provide a better strategy for recombinant protein preparation in E. coli, but also reveal that rapid rehabilitation from stresses and stationary phase protein overproduction are fundamental characters of E. coli.  相似文献   

3.
B A Bridges  A R Timms 《The EMBO journal》1997,16(11):3349-3356
Strains of Escherichia coli carrying the mutY mutation lack a mismatch correction glycosylase that removes adenines from various mismatch situations. In growing bacteria, 8-oxoguanine-adenine mispairs persist and can give rise to G-->T transversions during subsequent replication cycles. We now show that when trpA23 mutY bacteria are held under tryptophan starvation conditions the tryptophan-independent mutants that arise include small in-frame deletions in addition to transversions. The trpA23 reversion system appears to be unusual in that small in-frame deletions occurring in a particular region of the gene can lead to the production of a functional protein. We suggest that this is a consequence of the deletion causing the polar group on the arginine at the trpA23 site to be pulled away from the active site of the enzyme. Such deletions are also found with starved bacteria defective in methyl-directed mismatch correction activity (mutH, mutL or mutS), and deletion mutations are also found among the much lower number of mutants that arise in bacteria wild-type for mismatch correction. There is thus a pathway, hitherto undetected, leading to deletions probably from mismatches under conditions of growth restraint. RecA, UmuC, UvrA, MutH,L,S, SbcC and SbcD proteins are not required for the operation of the deletion pathway. A possible explanation is that the deletion pathway is not dependent upon further replication and that it fails to be discernible in growing cells because it is relatively slow acting and mismatches are likely to encounter a DNA replication fork before the initial step of the deletion pathway.  相似文献   

4.
Metabolism of D-arabinose: a new pathway in Escherichia coli   总被引:19,自引:16,他引:3       下载免费PDF全文
Several growth characteristics of Escherichia coli K-12 suggest that growth on l-fucose results in the synthesis of all the enzymes necessary for growth on d-arabinose. Conversely, when a mutant of E. coli is grown on d-arabinose, all of the enzymes necessary for immediate growth on l-fucose are present. Three enzymes of the l-fucose pathway in E. coli, l-fucose isomerase, l-fuculokinase, and l-fuculose-l-phospháte aldolase possess activity on d-arabinose, d-ribulose, and d-ribulose-l-phosphate, respectively. The products of the aldolase, with d-ribulose-l-phosphate as substrate, are dihydroxyacetone phosphate and glycolaldehyde. l-Fucose, but not d-arabinose, is capable of inducing these activities in wild-type E. coli. In mutants capable of utilizing d-arabinose as sole source of carbon and energy, these activities are induced in the presence of d-arabinose and in the presence of l-fucose. Mutants unable to utilize l-fucose, selected from strains capable of growth on d-arabinose, are found to have lost the ability to grow on d-arabinose. Enzymatic analysis of cell-free extracts, prepared from cultures of these mutants, reveals that a deficiency in any of the l-fucose pathway enzymes results in the loss of ability to utilize d-arabinose. Thus, the pathway of d-arabinose catabolism in E. coli K-12 is believed to be: d-arabinose right harpoon over left harpoon d-ribulose --> d-ribulose-l-phosphate right harpoon over left harpoon dihydroxyacetone phosphate plus glycolaldehyde. Evidence is presented which suggests that the glycolaldehyde is further oxidized to glycolate.  相似文献   

5.
Escherichia coli recBC deletion mutants.   总被引:6,自引:8,他引:6       下载免费PDF全文
Mutants of Escherichia coli with deletions of the recB and recC genes were obtained by two methods using transposable DNA elements. The phenotypes of these mutants are similar to those of mutants with recBC point mutations. These results indicate that the RecBC gene products, exonuclease V, is not essential for the growth of E. coli but is important for DNA repair and recombination.  相似文献   

6.
(CTG)n.(CAG)n repeats undergo deletion at a high rate in plasmids in Escherichia coli in a process that involves RecA and RecB. In addition, DNA replication fork progression can be blocked during synthesis of (CTG)n.(CAG)n repeats. Replication forks stalled at (CTG)n.(CAG)n repeats may be rescued by replication restart that involves recombination as well as enzymes involved in replication and DNA repair, and this process may be responsible for the high rate of repeat deletion in E. coli. To test this hypothesis (CAG)n.(CTG)n deletion rates were measured in several E. coli strains carrying mutations involved in replication restart. (CAG)n.(CTG)n deletion rates were decreased, relative to the rates in wild type cells, in strains containing mutations in priA, recG, ruvAB, and recO. Mutations in priB and priC resulted in small reductions in deletion rates. In a recF strain, rates were decreased when (CAG)n comprised the leading template strand, but rates were increased when (CTG)n comprised the leading template. Deletion rates were increased slightly in a recJ strain. The mutational spectra for most mutant strains were altered relative to those in parental strains. In addition, purified PriA and RecG proteins showed unexpected binding to single-stranded, duplex, and forked DNAs containing (CAG)n and/or (CTG)n loop-outs in various positions. The results presented are consistent with an interpretation that the high rates of trinucleotide repeat instability observed in E. coli result from the attempted restart of replication forks stalled at (CAG)n.(CTG)n repeats.  相似文献   

7.
8.

Background  

Arginine biosynthesis in Escherichia coli is elevated in response to nutrient limitation, stress or arginine restriction. Though control of the pathway in response to arginine limitation is largely modulated by the ArgR repressor, other factors may be involved in increased stationary phase and stress expression.  相似文献   

9.
Some cultures of Escherichia coli BGA8, a mutant unable to synthesize putrescine, showed a change of behaviour and could grow almost equally well in either the absence or the presence of polyamines after repeated periods of polyamine starvation. Experiments in vivo with radioactive precursors showed that the bacteria which evaded the polyamine requirement had recovered their ability to synthesize putrescine from glucose or glutamic acid, but not from ornithine or arginine. These results are in agreement with the fact that the polyamine-independent cells were still deficient in the enzymes ornithine decarboxylase and agmatinase. Our findings seem to indicate the existence of a new pathway synthesize putrescine which does not involve ornithine or arginine as intermediates.  相似文献   

10.
We describe a method for generating gene replacements and deletions in Escherichia coli. The technique is simple and rapid and can be applied to most genes, even those that are essential. What makes this method unique and particularly effective is the use of a temperature-sensitive pSC101 replicon to facilitate the gene replacement. The method proceeds by homologous recombination between a gene on the chromosome and homologous sequences carried on a plasmid temperature sensitive for DNA replication. Thus, after transformation of the plasmid into an appropriate host, it is possible to select for integration of the plasmid into the chromosome at 44 degrees C. Subsequent growth of these cointegrates at 30 degrees C leads to a second recombination event, resulting in their resolution. Depending on where the second recombination event takes place, the chromosome will either have undergone a gene replacement or retain the original copy of the gene. The procedure can also be used to effect the transfer of an allele from a plasmid to the chromosome or to rescue a chromosomal allele onto a plasmid. Since the resolved plasmid can be maintained by selection, this technique can be used to generate deletions of essential genes.  相似文献   

11.
Summary A method is described for the selection of deletions in those genes of Escherichia coli that can be carried on specialized transducing phages.  相似文献   

12.
Previous reports of the transduction of topA deletions in Escherichia coli suggested that delta top A transductants grow normally only if they acquire spontaneous mutations that compensate for the topoisomerase I defect. We show that P1-mediated transduction of delta topA in the presence of sublethal concentrations of novobiocin, an inhibitor of the DNA gyrase B subunit, yields uncompensated Top- isolates which are dependent on novobiocin for optimum growth. In the absence of novobiocin these delta topA strains grow slowly, indicating that topA deletions are deleterious but not lethal to the cell. We propose that inhibitors of DNA gyrase B, presumably by lowering intracellular levels of DNA supercoiling, can phenotypically suppress a topoisomerase I defect in E. coli.  相似文献   

13.
AIMS: A metabolic pathway for L-2,3-butanediol (BD) as the main product has not yet been found. To rectify this situation, we attempted to produce L-BD from diacetyl (DA) by producing simultaneous expression of diacetyl reductase (DAR) and L-2,3-butanediol dehydrogenase (BDH) using transgenic bacteria, Escherichia coli JM109/pBUD-comb. METHODS AND RESULTS: The meso-BDH of Klebsiella pneumoniae was used for its DAR activity to convert DA to L-acetoin (AC) and the L-BDH of Brevibacterium saccharolyticum was used to reduce L-AC to L-BD. The respective gene coding each enzyme was connected in tandem to the MCS of pFLAG-CTC (pBUD-comb). The divided addition of DA as a source, addition of 2% glucose, and the combination of static and shaking culture was effective for the production. CONCLUSIONS: L-BD (2200 mg l(-1)) was generated from 3000 mg l(-1) added of DA, which corresponded to a 73% conversion rate. Meso-BD as a by-product was mixed by 2% at most. SIGNIFICANCE AND IMPACT OF THE STUDY: An enzyme system for converting DA to L-BD was constructed with a view to using DA-producing bacteria in the future.  相似文献   

14.
The steps involved in the biosynthesis of the ADP-L-glycero-beta-D-manno-heptose (ADP-L-beta-D-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-D-beta-D-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-D-beta-D-heptose. Our results demonstrate that the synthesis of ADP-D-beta-D-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase), and GmhB (D,D-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-L-beta-D-heptose precursor utilized in the assembly of inner core LPS.  相似文献   

15.
A mutant of Escherichia coli has been isolated that contains a large deletion (about 3 X 10(7) daltons of deoxyribonucleic acid) encompassing argA, fuc, and relA. This mutant strain (AA-787) is also cold sensitive for growth at 18 degrees C. Strain AA-787 was obtained fortuitously as a cold-sensitive pseudorevertant of a strain having a heat-sensitive peptidyl-transfer ribonucleic acid hydrolase. Genetic analysis, using transduction and interrupted mating, showed the cold sensitivity mutation to be located adjacent to relA. Further analysis demonstrated loss of relA, fuc, and argA gene functions but retention of eno and recB, closely linked genes adjacent to relA and argA, respectively. Unusually high cotransduction of flanking markers (cysC and thyA) indicated loss of approximately 1 min of the E. coli genetic map in strain AA-787. Guanosine 3'-diphosphate 5'-diphosphate (ppGpp) was synthetized in mutant strain AA-787 at basal levels, and ppGpp synthesis was stimulated by carbon-source downshift. No ppGpp synthesis could be obtained using ribosomes isolated from strain AA-787. These findings, taken together, show that deletion of relA in E. coli does not completely abolish ppGpp synthesis and suggests that another enzyme system must also be responsible for ppGpp synthesis.  相似文献   

16.
Biotin concentration was determined unequivocally with the E. coli bio mutant. The results demonstrate that this simple and efficient method can determine biotin concentration in the range of 10 pg to 50 ng/ml. The present method can also clearly distinguish biotin from its precursor and analog, dethiobiotin.  相似文献   

17.
18.
19.
Alternate pathway for isoleucine biosynthesis in Escherichia coli   总被引:3,自引:2,他引:1       下载免费PDF全文
A threonine dehydrataseless mutant of Escherichia coli, Crookes strain, was observed to grow on an acetate minimal medium without the usual requirement for isoleucine supplementation. Both the wild-type Crookes strain and a threonine auxotroph metabolized l-glutamate-1-(14)C to l-isoleucine-1-(14)C with no appreciable randomization, suggesting that a pathway for isoleucine formation from glutamate via beta-methylaspartate, beta-methyloxaloacetate, and alpha-ketobutyrate was possible in addition to the pathway from threonine and alpha-ketobutyrate. Crude cell-free extracts formed (14)C-beta-methylaspartate from (14)C-glutamate, and the conversion of beta-methylaspartate to alpha-ketobutyrate was also demonstrated, thus supporting the conclusion that glutamate can serve as a precursor of alpha-ketobutyrate (and isoleucine) without the necessary involvement of threonine as an intermediate.  相似文献   

20.
Escherichia coli mutants able to grow in putrescine have been isolated from gamma-aminobutyrate mutants. These mutants show putrescine-alpha-ketoglutarate transaminase and gamma-aminobutyraldehyde dehydrogenase activities. Both enzymes have been characterized, the first of them showing an apparent Km for putrescine of 22.5 microM and the second an apparent Km of 37 microM for NAD and 18 microM for delta-1-pyrroline; the optimum pH values were 7.2 and 5.4, respectively, for the two enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号