首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Syk kinase is regarded as a promising target for the treatment of antigen-driven B-cell malignancies, considering its essential role in propagating antigenic stimuli through the B-cell receptor (BCR). In certain common B-cell malignancies Syk is activated even in the absence of BCR engagement, suggesting a wider role for this kinase in lymphomagenesis. In this paper, we have profiled molecular differences between BCR-induced and constitutive Syk activation in terms of phosphorylation of regulatory tyrosine residues, downstream signaling properties and capacity to sustain B-cell proliferation. Analysis of primary chronic lymphocytic leukemia B-cells and diffuse large B-cell lymphoma cell lines revealed that constitutive and BCR-induced Syk activation differ with respect to the phosphorylation status of the regulatory tyrosines at positions 352 and 525/526, with only the first site being phosphorylated in the case of constitutive and both sites in the case of BCR-induced Syk activation. Syk phosphorylated only on Y352 is capable of downstream signaling, as evidenced by experiments with a phosphomimetic mutant in which the activation loop tyrosines (YY525/526) were replaced with phenylalanines. However, phosphorylation at YY525/526 was shown to significantly increase the enzymatic activity of Syk and to be required for sustained PLCγ2, Akt and ERK signaling as well as B-cell transformation. These data demonstrate that constitutively active Syk and Syk activated by BCR crosslinking represent separate stages of Syk activation with distinct signaling properties and transforming capacities.  相似文献   

2.
Metabotropic Glutamate Receptors (mGluRs) are Class C G-protein coupled receptors (GPCRs) that are expressed throughout the central nervous system and are involved in several neurological and psychiatric disorders. Although, many studies focused on Glutamate induced activation of mGluR2, however, the role of unstructured loop (or “BC loop”) in activation of metabotropic Glutamate receptors is currently unknown. Here, using Förster Resonance Energy Transfer (FRET) based assay in live cells we show that unstructured loop is required for Glutamate induced conformation and hence the activation of the receptor.  相似文献   

3.
Activation of the latent protein kinase, PKR, by extracellular stresses and triggering of resultant cellular apoptosis are mediated by the protein, PACT, which itself gets phosphorylated in stressed cells. We have analyzed the underlying biochemical mechanism by carrying out alanine-scanning mutagenesis of the PKR activation domain of PACT. Among the indispensable residues identified were two serine residues, whose phosphorylation was essential for the cellular actions of PACT. Two-dimensional gel analysis, Western analysis using phosphoamino acid-specific antiserum, and in vivo 32P labeling of PACT demonstrated that constitutive phosphorylation of one of the two residues, Ser246, was required for stress-induced phosphorylation of the other, Ser287. Substitution of either of them by threonine or aspartic acid, but not alanine, was tolerated. Substitution of both residues with the phosphoserine mimetic, aspartic acid, produced a mutant PACT that, unlike the wild-type protein, caused PKR activation and apoptosis, even in unstressed cells. These results indicate that phosphorylation of specific serine residues in the activation domain of PACT is the major mode of transmission of cellular stress response to PKR.  相似文献   

4.
Human plasminogen, a glycoprotein with NH2-terminal Glu, is rapidly converted by traces of plasmin to proteolytic derivatives with NH2-terminal Met 68, Lys 77, or Val 78 ("Lys-plasminogen"), which are much more readily activated to plasmin than is Glu-plasminogen. It has, therefore, been proposed that physiological activation of Glu-plasminogen occurs mainly via Lys-plasminogen intermediates (Wiman, B., and Wallén, P. (1973) Eur. J. Biochem. 36, 25-31). In the present study we have characterized a murine monoclonal antibody (LPm1) directed against an epitope exposed in Lys-plasminogen but not in Glu-plasminogen. The antibody was secreted by a hybridoma obtained by fusion of mouse myeloma cells (P3X63-Ag8-6.5.3) with spleen cells of a mouse immunized with purified Lys-plasmin-alpha 2-antiplasmin complex. Coupling of the alpha-amino groups of Lys-plasminogen with phenylisothiocyanate resulted in complete loss of immunoreactivity for LPm1, which was, however, fully restored by cleavage of the derivatized NH2-terminal amino acid. After a second cycle, immunoreactivity was not restored, indicating that the LPm1 antibody-binding site depends on the presence of Lys 77 and/or Val 78 as NH2-terminal amino acids. The immunoreactivity of Lys-plasminogen with LPm1 is abolished by reduction of the protein, suggesting that conversion of Glu-plasminogen to Lys-plasminogen is associated with a conformational alteration exposing the epitope for the LPm1 monoclonal antibody. In order to investigate the pathways of plasminogen activation in vivo, total plasmin-alpha 2-antiplasmin and Lys-plasmin-alpha 2-antiplasmin complexes were measured with sandwich-type micro enzyme-linked immunosorbent assays. Therefore, microtiter plates were coated with monoclonal antibodies against alpha 2-antiplasmin, and bound antigen was quantitated with horseradish peroxidase-conjugated LPm1 or a monoclonal antibody reacting equally well with Glu-plasmin as with Lys-plasmin. In 25 healthy subjects the plasmin-alpha 2-antiplasmin levels in plasma were undetectable (less than 0.1 nM). Infusion of tissue-type plasminogen activator in patients with thromboembolic disease resulted in generation of high concentrations of Glu-plasmin-alpha 2-antiplasmin complex (620 +/- 150 nM, n = 7) whereas neither Lys-plasmin-alpha 2-antiplasmin complex nor Lys-plasminogen were consistently detected. It is, therefore, concluded that activation of the fibrinolytic system in vivo occurs by direct cleavage of the Arg 560-Val 561 bond in Glu-plasminogen and not via formation of the Lys-plasminogen intermediates.  相似文献   

5.
The addition of platelet-derived growth factor (PDGF) to intact BALB/c 3T3 cells results in the rapid (less than 1 min), dose-dependent phosphorylation of a number of proteins that could be isolated by a monoclonal antiphosphotyrosine antibody. The predominant tyrosinephosphorylated protein shared many characteristics with the PDGF receptor, including its molecular weight (170,000), isoelectric point (pI of about 4.2), its binding to DEAE-cellulose, and its pattern of binding to lectins. This 170-kDa protein, labeled with [35S] methionine, was substantially purified from PDGF-stimulated cells using the monoclonal anti-phosphotyrosine antibody but was not significantly immunopurified from unstimulated cells. At 37 degrees C, phosphorylation of the 170-kDa protein was maximal by 5-10 min of exposure to PDGF, and thereafter decreased rapidly. However, at 4 degrees C, the phosphorylation continued to increase after 3 h of exposure to PDGF. Subsequently, shifting the cells from 4 to 37 degrees C resulted in an additional rapid burst of tyrosine phosphorylation. Among the other PDGF-stimulated molecules, the most prominent and consistently observed was a cytosolic, acidic (pI of about 4.2), 74-kDa protein. These findings indicate that the action of PDGF in vivo is associated with the rapid and transient tyrosine phosphorylation of several membrane and cytosolic proteins; the most prominent of these proteins, isolated by monoclonal antibody to phosphotyrosine, is likely to be the PDGF receptor. The use of this antibody provides a new approach for purification of the PDGF receptor.  相似文献   

6.
Proteins that contain a classical nuclear localization signal (NLS) are recognized in the cytoplasm by a heterodimeric import receptor composed of importin/karyopherin alpha and beta. The importin alpha subunit recognizes classical NLS sequences, and the importin beta subunit directs the complex to the nuclear pore. Recent work shows that the N-terminal importin beta binding (IBB) domain of importin alpha regulates NLS-cargo binding in the absence of importin beta in vitro. To analyze the in vivo functions of the IBB domain, we created a series of mutants in the Saccharomyces cerevisiae importin alpha protein. These mutants dissect the two functions of the N-terminal IBB domain, importin beta binding and auto-inhibition. One of these importin alpha mutations, A3, decreases auto-inhibitory function without impacting binding to importin beta or the importin alpha export receptor, Cse1p. We used this mutant to show that the auto-inhibitory function is essential in vivo and to provide evidence that this auto-inhibitory-defective importin alpha remains bound to NLS-cargo within the nucleus. We propose a model where the auto-inhibitory activity of importin alpha is required for NLS-cargo release and the subsequent Cse1p-dependent recycling of importin alpha to the cytoplasm.  相似文献   

7.
8.
A simple and rapid procedure is described for fully separating phosphotyrosine from phosphoserine and phosphothreonine through one-dimensional thin-layer chromatography. The migration properties of these phosphoamino acids are compared with those of CMP, UMP, ATP, ribose phosphate, and inorganic orthophosphate, considered the most frequent comigrating products derived from 32P-labeling experiments. We demonstrate that Rf values for the three phosphoamino acids differ from those displayed by the mentioned contaminating compounds. One of the most relevant advantages of this procedure is that a complete separation of phosphotyrosine can be achieved in only 90 min.  相似文献   

9.
Alanine scanning mutagenesis and the introduction of deletions and insertions were used to address the role of the large cytoplasmic loop in 2-deoxy-D-glucose (2-DOG) uptake by GLUT1 expressed in Xenopus oocytes. Alanine scanning mutagenesis of 29 amino acid residues that are identical or homologous in GLUT1 to GLUT4 demonstrated that the transport activities of only a few variants were affected. Progressive truncation of the loop by six deletions leaving intact 59 (delta236-241), 49 (delta231-246), 39 (delta226-251), 28 (delta221-257), 18 (delta216-262), or 10 (delta213-267) amino acid residues resulted in a progressive decrease in 2-DOG uptake. Compared with wild-type GLUT1 the uptake rates varied between 33% for the delta236-241 mutant and 4% for the delta213-267 mutant. Insertional mutagenesis using hexaalanine or hexaglycine to fill in the deletion 236D-241L restored 2-DOG uptake to 73% of wild-type GLUT1 in the case of hexaalanine, whereas hexaglycine insertion was without effect. Confocal laser microscopy demonstrated that a deletion of six amino acid residues did not influence the expression level in the plasma membrane (delta236-241 mutant), whereas the plasma membrane fluorescence of the delta213-267 mutant was comparable with that of water-injected Xenopus oocytes. Computer-aided secondary structure prediction of the loop suggested that it consists of a long alpha-helix bundle interrupted or kinked by the highly conserved glycine-233.  相似文献   

10.
Cadherin adhesion molecules are key determinants of morphogenesis and tissue architecture. Nevertheless, the molecular mechanisms responsible for the morphogenetic contributions of cadherins remain poorly understood in vivo. Besides supporting cell-cell adhesion, cadherins can affect a wide range of cellular functions that include activation of cell signalling pathways, regulation of the cytoskeleton and control of cell polarity. To determine the role of E-cadherin in stratified epithelium of the epidermis, we have conditionally inactivated its gene in mice. Here we show that loss of E-cadherin in the epidermis in vivo results in perinatal death of mice due to the inability to retain a functional epidermal water barrier. Absence of E-cadherin leads to improper localization of key tight junctional proteins, resulting in permeable tight junctions and thus altered epidermal resistance. In addition, both Rac and activated atypical PKC, crucial for tight junction formation, are mislocalized. Surprisingly, our results indicate that E-cadherin is specifically required for tight junction, but not desmosome, formation and this appears to involve signalling rather than cell contact formation.  相似文献   

11.
Tumor progression locus 2 (TPL-2) kinase is essential for Toll-like receptor 4 activation of the mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) and for upregulation of the inflammatory cytokine tumor necrosis factor (TNF) in lipopolysaccharide (LPS)-stimulated macrophages. LPS activation of ERK requires TPL-2 release from associated NF-kappaB1 p105, which blocks TPL-2 access to its substrate, the ERK kinase MEK. Here we demonstrate that TPL-2 activity is also regulated independently of p105, since LPS stimulation was still needed for TPL-2-dependent activation of ERK in Nfkb1(-/-) macrophages. In wild-type macrophages, LPS induced the rapid phosphorylation of serine (S) 400 in the TPL-2 C-terminal tail. Mutation of this conserved residue to alanine (A) blocked the ability of retrovirally expressed TPL-2 to induce the activation of ERK in LPS-stimulated Nfkb1(-/-) macrophages. TPL-2(S400A) expression also failed to reconstitute LPS activation of ERK and induction of TNF in Map3k8(-/-) macrophages, which lack endogenous TPL-2. Consistently, the S400A mutation was found to block LPS stimulation of TPL-2 MEK kinase activity. Thus, induction of TPL-2 MEK kinase activity by LPS stimulation of macrophages requires TPL-2 phosphorylation on S400, in addition to its release from NF-kappaB1 p105. Oncogenic C-terminal truncations of TPL-2 that remove S400 could promote its transforming potential by eliminating this critical control step.  相似文献   

12.
Activation of the Raf serine/threonine protein kinases is tightly regulated by multiple phosphorylation events. Phosphorylation of either tyrosine 340 or 341 in the catalytic domain of Raf-1 has been previously shown to induce the ability of the protein kinase to phosphorylate MEK. By using a combination of mitogenic and enzymatic assays, we found that phosphorylation of the adjacent residue, serine 338, and, to a lesser extent, serine 339 is essential for the biological and enzymatic activities of Raf-1. Replacement of S338 with alanine blocked the ability of prenylated Raf-CX to transform Rat-1 fibroblasts. Similarly, the loss of S338-S339 in Raf-1 prevented protein kinase activation in COS-7 cells by either oncogenic Ras[V12] or v-Src. Consistent with phosphorylation of S338-S339, acidic amino acid substitutions of these residues partially restored transforming activity to Raf-CX, as well as kinase activation of Raf-1 by Ras[V12] or v-Src. Two-dimensional phosphopeptide mapping of wild-type Raf-CX and Raf-CX[A338A339] confirmed the presence of a phosphoserine-containing peptide with the predicted mobility in the wild-type protein which was absent from the mutant. This peptide could be quantitatively precipitated by an antipeptide antibody specific for the 18-residue tryptic peptide containing S338-S339 and was demonstrated to contain only phosphoserine. Phosphorylation of this peptide in Raf-1 was significantly increased by coexpression with Ras[V12]. These data demonstrate that Raf-1 residues 338 to 341 constitute a unique phosphoregulatory site in which the phosphorylation of serine and tyrosine residues contributes to the regulation of Raf by Ras, Src, and Ras-independent membrane localization.  相似文献   

13.
In vivo immunization of normal subjects with a variety of antigens generates circulating lymphoblastoid (LB) B cells, which in vitro spontaneously secrete significant levels of specific antibody. Since activation and initial differentiation of these cells occurs in vivo, they provide a useful model for the study of the later stages of B cell maturation. In the present study, we investigated the requirement of interleukin 6 (IL-6) for the "spontaneous" in vitro production of IgG-Tet by LB B cells. Addition of IL-6 to cultures of LB B cells in medium supplemented with 10% fetal calf serum failed to increase the levels of IgG-Tet produced in vitro. However, addition of anti-IL-6 antibodies decreased IgG-Tet production as much as 70%, and this inhibition could be reversed by the addition of IL-6. LB B cells cultured in serum-free medium in order to restrict endogenous IL-6 production secreted only low levels of antibody, unless exogenous IL-6 was added. Addition of 2.5 units/ml of IL-6 to serum-free cultures induced an increase in IgG-Tet secretion nearly comparable to that seen in cultures supplied with serum. The magnitude of the increase in IgG-Tet secretion in response to exogenous IL-6 was inversely related to the number of cells in culture, which was due in part to increased endogenous IL-6 production in cultures with higher cell concentrations. Experiments including hydroxyurea in serum-free cultures indicated that IL-6-dependent enhancement of LB B cells' IgG-Tet secretion was not primarily mediated by cell growth. These observations suggest that in vivo generated LB B cells are not totally committed to antibody secretion, and that IL-6 is essential for in vivo antigen-induced LB B cells to reach the antibody-secreting stage.  相似文献   

14.
The zebrafish homologue of caldesmon is similar to the mammalian low molecular weight caldesmon (l-CaD). In this study, we explored the effects of caldesmon knockdown on vertebrate heart development in vivo. In a zebrafish model caldesmon was knocked down resulting in defective cardiac morphogenesis, muscularization and function. The data provide the first functional assessment of the role of caldesmon in cardiac development in vivo, and indicate that caldesmon is essential for proper cardiac organogenesis and function. Because caldesmon expression remarkably influences cardiac muscularization, the findings are relevant for designing future therapeutic strategies in the regeneration of cardiac damage.  相似文献   

15.
B Patterson  C Guthrie 《Cell》1987,49(5):613-624
Yeast contains at least 24 snRNAs, many of which are dispensable for viability. We recently demonstrated that a small subset of these RNAs has a functional binding site for the Sm antigen, a hallmark of metazoan snRNAs involved in mRNA processing. Here we show that one of these snRNAs, snR7, is required for growth. To determine the biochemical basis of lethality in cells lacking snR7, we engineered the conditional synthesis of snR7 by fusing the snRNA coding sequences to the yeast GAL1 control region. Cells depleted for the SNR7 gene product by growth on glucose for five generations show marked accumulation of unspliced mRNA precursors from the four intron-containing genes tested. In some cases, intron-exon 2 lariats also accumulate. We have identified a 70 nucleotide domain within snR7 with limited sequence-specific but striking structural homology to the mammalian snRNA U5. We conclude that mRNA splicing in yeast requires the function of a U5-like snRNA.  相似文献   

16.
Li Q  Bian S  Hong J  Kawase-Koga Y  Zhu E  Zheng Y  Yang L  Sun T 《PloS one》2011,6(10):e26000
The adult hippocampus consists of the dentate gyrus (DG) and the CA1, CA2 and CA3 regions and is essential for learning and memory functions. During embryonic development, hippocampal neurons are derived from hippocampal neuroepithelial cells and dentate granular progenitors. The molecular mechanisms that control hippocampal progenitor proliferation and differentiation are not well understood. Here we show that noncoding microRNAs (miRNAs) are essential for early hippocampal development in mice. Conditionally ablating the RNAase III enzyme Dicer at different embryonic time points utilizing three Cre mouse lines causes abnormal hippocampal morphology and affects the number of hippocampal progenitors due to altered proliferation and increased apoptosis. Lack of miRNAs at earlier stages causes early differentiation of hippocampal neurons, in particular in the CA1 and DG regions. Lack of miRNAs at a later stage specifically affects neuronal production in the CA3 region. Our results reveal a timing requirement of miRNAs for the formation of specific hippocampal regions, with the CA1 and DG developmentally hindered by an early loss of miRNAs and the CA3 region to a late loss of miRNAs. Collectively, our studies indicate the importance of the Dicer-mediated miRNA pathway in hippocampal development and functions.  相似文献   

17.
18.
Chatti K  Farrar WL  Duhé RJ 《Biochemistry》2004,43(14):4272-4283
The phosphorylation of an "activation loop" within protein kinases is commonly associated with establishing catalytic competence, and phosphorylation of the Tyr(1007) residue in the activation loop of Janus kinase 2 (JAK2) has been shown to be essential for intracellular propagation of cytokine-initiated signaling. We provide evidence for the presence of a basal activity state of JAK2, which was observed in the absence of activation loop phosphorylation. Phosphorylation of the JAK2 activation loop was essential for conversion to the high-activity state, characterized by high-efficiency ATP utilization during autophosphorylation. Mutagenesis of activation loop tyrosine residues Tyr(1007/1008) to phenylalanine residues impaired, but did not abolish, the enzyme's ability to autophosphorylate. The activation loop mutant JAK2 could also transphosphorylate an inactive JAK2 fragment coexpressed in Sf21 cells, providing evidence of exogenous substrate phosphorylation. The mutant enzyme remained in a basal activity state characterized by low-efficiency ATP utilization during autophosphorylation. Mutagenesis of a critical Lys(882) residue to a glutamate residue abolished all evidence of kinase activity, confirming that the observed activity of Tyr-to-Phe mutants was not due to another kinase. Our data are consistent with the proposal that JAK2 is an inefficient but active enzyme in the absence of activation loop phosphorylation and is capable of conversion to a high-activity state by autophosphorylation under physiological ATP concentrations. This theoretically precludes the need for an upstream activating kinase. The activation process of JAK2 may be envisioned as a multistate process involving at least two kinetically distinct states of activity.  相似文献   

19.
Cot/Tpl2/MAP3K8 is a serine/threonine kinase known to activate the ERK, p38, and JNK kinase pathways. Studies of Tpl2 knock-out mice reveal a clear defect in tumor necrosis factor-alpha production, although very little detail is known about its regulation and the signaling events involved. In the present study we demonstrated that phosphorylation of Cot was required for its maximal activity as phosphatase treatment of Cot decreased its kinase activity. The Cot sequence contains a conserved threonine at position 290 in the activation loop of the kinase domain. We found that mutation of this residue to alanine eliminated its ability to activate MEK/ERK and NF-kappaB pathways, whereas a phosphomimetic mutation to aspartic acid could rescue the ability to activate MEK. Thr-290 was also required for robust autophosphorylation of Cot. Antibody generated to phospho-Thr-290-Cot recognized both wild-type and kinase-dead Cot, suggesting that phosphorylation of Thr-290 did not occur through autophosphorylation but via another kinase. We showed that Cot was constitutively phosphorylated at Thr-290 in transfected human embryonic kidney 293T cells as well as human monocytes as this residue was phosphorylated in unstimulated and lipopolysaccharide-stimulated cells to the same degree. Treatment with herbimycin A inhibited Cot activity in the MEK/ERK pathway but did not inhibit phosphorylation at Thr-290. Together these results showed that phosphorylation of Cot at Thr-290 is necessary but not sufficient for full kinase activity in the MEK/ERK pathway.  相似文献   

20.

Background

STARS (STriated muscle Activator of Rho Signaling) is a sarcomeric protein expressed early in cardiac development that acts as an acute stress sensor for pathological remodeling. However the role of STARS in cardiac development and function is incompletely understood. Here, we investigated the role of STARS in heart development and function in the zebrafish model and in vitro.

Methodology and Principal Findings

Expression of zebrafish STARS (zSTARS) first occurs in the somites by the 16 somite stage [17 hours post fertilization (hpf)]. zSTARS is expressed in both chambers of the heart by 48 hpf, and also in the developing brain, jaw structures and pectoral fins. Morpholino-induced knockdown of zSTARS alters atrial and ventricular dimensions and decreases ventricular fractional shortening (measured by high-speed video microscopy), with pericardial edema and decreased or absent circulation [abnormal cardiac phenotypes in 126/164 (77%) of morpholino-injected embryos vs. 0/152 (0%) of control morpholino embryos]. Co-injection of zsrf (serum response factor) mRNA rescues the cardiac phenotype of zSTARS knockdown, resulting in improved fractional shortening and ventricular end-diastolic dimensions. Ectopic over-expression of STARS in vitro activates the STARS proximal promoter, which contains a conserved SRF site. Chromatin immunoprecipitation demonstrates that SRF binds to this site in vivo and the SRF inhibitor CCG-1423 completely blocks STARS proximal reporter activity in H9c2 cells.

Conclusions/Significance

This study demonstrates for the first time that STARS deficiency severely disrupts cardiac development and function in vivo and revealed a novel STARS-SRF feed-forward autoregulatory loop that could play an essential role in STARS regulation and cardiac function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号