首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human V gamma 9/V delta 2 T cells, the major subset of gamma/delta T cells in peripheral blood of adults, mediate proliferative and cytotoxic responses to Daudi Burkitt's lymphoma cells without previous in vitro exposure to Daudi. Our experiments show that some gamma/delta T cells coexpressing V gamma 9 and V delta 1 genes also react to Daudi cells in cytotoxic and proliferative assays. Expression of V gamma 9 is not sufficient for the recognition of Daudi cells because most gamma/delta T cells expressing V delta 1 paired with V gamma 9 or other V gamma genes neither kill Daudi cells nor proliferate to Daudi. V gamma 9/V delta 2 T cells do not proliferate to other cell lines such as K562 or Molt4 that are sensitive to MHC-unrestricted cytolysis by NK cells and by most IL-2-activated gamma/delta T cell clones. Cold target inhibition assays demonstrate that Daudi cells are stronger inhibitors than K562 and Molt4 of MHC-unrestricted lysis by V gamma 9/V delta 2 clones. However, cold Daudi cells are relatively weaker inhibitors of MHC-unrestricted lysis by NK cell clones, most gamma/delta T cell clones expressing V delta 1 and alpha/beta T cell clones. Thus, recognition by V gamma 9/V delta 2 T cells and certain V gamma 9/V delta 1 T cells of Daudi appears to involve a specific triggering pathway that is distinct from recognition by these gamma/delta T cells of Molt4, K562, and other target cells. NK cell clones and most other gamma/delta and alpha/beta T cell clones derived from the same normal volunteer blood donors do not show this specific interaction with Daudi cells. These data show that distinct subsets of human gamma/delta T cells recognize Daudi cells and support the idea that the gamma/delta TCR may be directly involved.  相似文献   

2.
BACKGROUND: Human V gamma 9/V delta 2 T lymphocytes recognize nonpeptidic antigens in a manner distinct from the classical antigen recognition by alpha beta T cells. The apparent lack of major histocompatibility (MHC) restriction and antigen processing allows very fast responses against pathogenic insults. To address the potential functional requirement for accessory molecules, we investigated the roles of the CD2 and lymphocyte function-associated antigen (LFA)-1 T-cell co-receptors in antigen-induced activities of human V gamma 9/V delta 2 T-cell clones. MATERIALS AND METHODS: Human peripheral blood V gamma 9/V delta 2 T lymphocytes were cloned and their cytotoxicity against Daudi lymphoma was measured by a standard 51Cr-release assay. The responses of V gamma 9/V delta 2 T lymphocytes to nonpeptidic antigens were assessed using DNA synthesis and cytokine ELISA assays. Monoclonal antibodies specific for various molecules with potential T-cell accessory functions were utilized in blocking assays. RESULTS: All of our V gamma 9/V delta 2 T-cell clones displayed the Th1 phenotype. The anti-LFA-1 antibody strongly inhibited the cytotoxicity of V gamma 9/V delta 2 T cells against Daudi B-cell lymphoma; whereas, it had no influence on the antigen-induced cytokine release or proliferation. In contrast, antibodies against CD2 and LFA-3 had no effect on the lytic activity of V gamma 9/V delta 2 T cells, but strongly inhibited the cytokine release and proliferation. However, the CD2-LFA-3 interaction was not an absolute requirement for the cytokine release and the DNA synthetic activity of antigen-stimulated V gamma 9/V delta 2 T cells, since the inhibitory effect could be reversed by addition of exogenous interleukin 2 (IL-2). CONCLUSIONS: These novel observations indicate that the signals generated by different accessory molecules and IL-2 can contribute in an integrated fashion to the regulation of V gamma 9/V delta 2 T cells. These interactions may be important for the effectiveness of V gamma 9/V delta 2 T-cell responses.  相似文献   

3.
Peripheral blood TCR-gamma delta cells with different functional V gamma or V delta gene rearrangements represent two nonoverlapping subsets. The major subset uses the V gamma 9 and the V delta 2 gene segments and the minor subset the V delta 1 gene segments in its functional TCR rearrangement. Upon in vitro activation, these TCR-gamma delta lymphocytes display MHC-unrestricted lytic activity, against a wide variety of tumor cells of distinct histologic origin. Here we show that fresh TCR-gamma delta lymphocytes that express a V gamma 9-V delta 2 encoded TCR display a specific proliferative response to Daudi, Burkitt's lymphoma cells. Moreover, cloned V gamma 9-V delta 2 lymphocytes show the capacity to lyse Daudi cells, whereas none of the cloned V gamma 1 TCR-gamma delta lymphocytes shows such specificity. Nucleotide diversity at the V-D-J junction of the TCR-V delta 2 gene did not contribute to this Daudi cell specificity. Comparison of the MHC-unrestricted cytolytic capacities of the V gamma 9-V delta 2 and the V delta 1 clones using a panel of distinct types of tumor target cells showed that on average, the level of MHC unrestricted lysis of V gamma 9-V delta 2 clones against these tumor cells exceeded that of V delta 1 clones. However, in contrast to all these tumor cell lines, only the Daudi cells showed such an absolute distinction in susceptibility to lysis by V gamma 9-V delta 2 and V delta 1 clones. V gamma 9-V delta 2 clones that were generated with a stimulator cell other than Daudi did not lyse their stimulator cells but nevertheless showed specific cytolysis of Daudi cells. The specific proliferation to and cytolysis of Daudi cells of the entire V gamma 9-V delta 2 subpopulation of TCR-gamma delta lymphocytes is reminiscent of a superantigen response.  相似文献   

4.
CD4+ TCR-gamma delta+ T cells comprise a very small subset of TCR-gamma delta+ T cells. CD4+ TCR gamma delta+ T cell clones were established to study the phenotypical and functional characteristics of these cells. Thirty-four CD4+ TCR-gamma delta+ T cell clones were established after sorting CD4+ T cells from a pre-expanded TCR-gamma delta+ T cell population. These clones as well as the CD4- TCR-gamma delta+ T cells from the same donor used V gamma 2 and V delta 2. In a second cloning experiment CD4+ TCR-gamma delta+ T cells were cloned directly from freshly isolated TCR-gamma delta+ T cells using a cloning device coupled to a FACS sorter. Forty-three clones were obtained, which all expressed CD4 and TCR-gamma delta. Eleven of these clones used V delta 1 and three of them coexpressed V gamma 2. The other CD4+ TCR-gamma delta+ T cell clones used both V delta 2 and V gamma 2. CD4+ TCR-gamma delta+ T cell clones expressed CD28 irrespective of the V gamma or V delta usage, and were CD11b negative. Three CD4-CD8+ TCR-gamma delta+ clones expressed CD8 alpha but not CD8 beta and were CD11b positive. CD28 expression among CD4-CD8+ and CD4-CD8- was variable but lower than on CD4+ T cell clones. CD4- TCR-gamma delta+ T cell clones using V gamma 2 and V delta 2 specifically lyse the Burkitt lymphoma cell line Daudi and secrete low levels of IFN-gamma and granulocyte-macrophage-CSF upon stimulation with Daudi. In contrast, most CD4+ T cell clones that use V gamma 2 and V delta 2 had a very low lytic activity against Daudi cells and secrete high levels of IFN-gamma and granulocyte-macrophage-CSF after stimulation with Daudi cells. The NK-sensitive cell line K562 was killed efficiently by the CD4- TCR-gamma delta+ T cell clones, but not by CD4+ TCR-gamma delta+ T cell clones, and could not induce cytokine secretion in CD4+ or CD4- T cell clones. CD4+ TCR-gamma delta+ T cell clones, but not the CD4- clones, could provide bystander cognate T cell help for production of IgG, IgM, and IgA in the presence of IL-2 and IgE in the presence of IL-4. Thus, CD4+ TCR-gamma delta+ T cells are similar to CD4+ TCR-alpha beta+ T cells in their abilities to secrete high levels of cytokines and to provide T cell help in antibody production.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
BACKGROUND: T lymphocytes infiltrating airways during the allergic immune response play a fundamental role in recruiting other specialized cells, such as eosinophils, by secreting interleukin 5 (IL-5), and promoting local and systemic IgE synthesis by producing IL-4. Whether these presumed allergen-specific T cells are of mucosal or systemic origin is still a matter of conjecture. MATERIALS AND METHODS: Immunophenotype, IL-4 production, and in vitro proliferative response to specific or unrelated allergens were analyzed in the bronchoalveolar lavage (BAL) fluid lymphocyte suspensions obtained from untreated patients with allergic asthma. Healthy subjects and patients affected by pulmonary sarcoidosis, a granulomatous lung disease characterized by infiltrating Th1 CD4+ lymphocytes, served as controls. RESULTS: The proportions of gamma delta T lymphocytes, mostly CD4+ or CD4- (-)CD8-, was higher in asthmatic subjects than in controls (p < 0.05). Most BAL gamma delta CD4+ lymphocytes of asthmatic patients displayed the T cell receptor (TCR)-gamma delta V delta 1 chain. While CD30 antigen coexpression on the surface of BAL alpha beta(+) T lymphocytes was low (ranging from 5 to 12%), about half of pulmonary gamma delta T cells coexpressed it. These cells produced IL-4 and negligible amounts of interferon-gamma (IFN gamma), and proliferated in vitro in response to purified specific but not unrelated allergens. In contrast, control or sarcoidosis gamma delta T cells never displayed the CD30 surface molecule or produced significant quantities of IL-4. CONCLUSIONS: These findings not only confirm our previous hypothesis that the allergen-specific Th2-type lymphocytes found in the lungs of asthmatic patients are gamma delta T cells belonging to airway mucosal immunocytes, but also strongly support the notion that asthma is a local rather than a systemic disease.  相似文献   

6.
Human gamma delta T cells of peripheral blood can be divided in two groups in terms of their TCR as well as their behavior upon in vitro stimulation. The major subset expresses the TCR V-segments V gamma 9 and V delta 2 and proliferates in response to ligands revealed by various microorganisms, and the cell line Daudi in addition. The minor group is less homogenous on the gamma-chain but is almost completely identified by mAb against the V delta 1 segment; there is no ligand known to promote growth of these cells. Here we demonstrate that gamma delta T cells out of this subgroup are strongly stimulated in vitro by cells from several Burkitt's lymphoma cell lines. EBV infection of the Burkitt's lymphoma cell lines enhanced the stimulatory ability towards the T cells. Although EBV infection influenced the expression of a variety of cell surface molecules including ICAM-1 and LFA-3, no correlation to the gamma delta T cell-stimulating capacity became apparent. We conclude that Burkitt's lymphoma cells and transformed B cells express ligands of cellular origin for a hitherto poorly characterized subgroup of human gamma delta T cells.  相似文献   

7.
We have analyzed the requirements for the induction of proliferative responses by thymic CD4-CD8- gamma delta T cells. Enriched populations of CD4-CD8- thymocytes from newborn mice, purified by negative selection with anti-CD4, anti-CD8, and anti-TCR alpha beta mAbs were found to contain approximately 20% gamma delta T cells that were p55IL-2R-. When these cells were cultured with a panel of lymphokines (IL-1, -2, -4, and -7), a small response was observed to some of the cytokines tested individually; however, combinations of certain lymphokines (IL-1 + 2, IL-1 + 7, and IL-2 + 7) were found to induce significant proliferation and the selective outgrowth (75-90%) of gamma delta T cells. These cells were IL-2R+, remained CD4-, yet expressed variable levels of CD8. A limited analysis with specific anti-V gamma and V delta mAb suggested that there had not been a selective expansion of preexisting V gamma 2, V gamma 3, or V delta 4 populations in response to the stimulatory lymphokine combinations. Thymic CD4-CD8- gamma delta T cells were unresponsive to stimulation with immobilized anti-pan gamma delta mAb alone. However, in the presence of immobilized anti-pan gamma delta mAb and IL-1, IL-2, or IL-7, but not IL-4, a vigorous proliferative response was observed. Phenotypic analysis showed that 80 to 95% of the proliferating cells were polyclonally expanded gamma delta T cells, expressed the p55IL-2R, and the majority remained CD4-CD8-. Blocking studies with anti-IL-2R mAb showed that stimulation with anti-pan gamma delta + IL-1, but not anti-pan gamma delta + IL-7 was dependent on endogenously produced IL-2. Collectively, these studies suggest that the activation requirements of newborn thymic gamma delta T cells differ markedly from alpha beta T cells in that gamma delta T cells 1) respond to combinations of cytokines in the absence of TCR cross-linking, 2) can respond to TCR cross-linking in the presence of exogenous cytokines, 3) but are unable to activate endogenous cytokine production solely in the presence of TCR cross-linking.  相似文献   

8.
The observation that gamma delta T lymphocytes react to mycobacteria has provided an important model for investigation of these cells in the immune response to infection. One important question regarding human gamma delta T cells is the breadth of the T cell repertoire in response to specific pathogens. The present study was undertaken to characterize, in molecular terms, the mycobacterium-specific gamma delta TCR repertoire. Mononuclear cells were isolated from the peripheral blood and pleural fluid of patients with tuberculous pleuritis and stimulated with Mycobacterium tuberculosis in vitro. Cytofluorometric analysis of the expressed gamma delta TCR repertoire of M. tuberculosis expanded cells was performed using anti-V region antibodies. The majority of responding gamma delta T cells express a receptor composed of V delta 2 and V gamma 9 chains. Molecular analysis by PCR amplification confirmed use of the V delta 2 and V gamma 9 gene segments in these cells, and demonstrated predominant usage of J delta 1 and J gamma P gene segments. Analysis of nucleotide sequence at the V-J junctions revealed extensive diversity including nucleotide deletions of V, D, and J gene segments and nucleotide segment additions. The predicted amino acid sequences further indicates diversity in the V-J encoded region of the protein chains. The data indicate that M. tuberculosis-driven expansion of gamma delta T cells in vitro depends on specific pairing of the V delta 2 and V gamma 9 polypeptide chains, without apparent selection of explicit V-J junction regions.  相似文献   

9.
IL-4 has been shown to act as a growth factor for human T cells. In addition, IL-4 can enhance CTL activity in MLC, but blocks IL-2 induced lymphokine activated killer cell activity in PBL. In our study, the cloning efficiencies, Ag-specific CTL activity and non-MHC-restricted cytotoxicity of CTL clones generated in IL-2 were compared to those generated in IL-4. In a first experiment, T cells were stimulated with the EBV-transformed B cell line JY and cloned 7 days later with feeder cells and either IL-2 or IL-4. In a second experiment, stimulation of the T cells was carried out in the presence of IL-2 plus anti-IL-4 antibodies or IL-4 plus anti-IL-2 antibodies in order to block the effects of IL-4 and IL-2, respectively, produced by the feeder cells. Although the cloning efficiencies in the second experiment were lower than those obtained in the first experiment, the cloning efficiencies obtained with IL-2 or IL-4 were similar in both experiments. The overall proportion of TCR alpha beta+ T cell clones cytotoxic for the stimulator cell JY established in IL-2 or IL-4 were comparable. A striking difference between the clones obtained in IL-2 or IL-4 was that a large proportion of the clones obtained in IL-4 expressed CD4 and CD8 simultaneously, whereas none of the clones isolated in IL-2 were double positive. Also gamma delta+ T cell clones could be established with IL-4 as a growth factor. TCR gamma delta+ T cell clones isolated in either IL-2 or IL-4 were CD4-CD8- or CD4-CD8+, but the proportion of CD4-CD8+ clones isolated in IL-4 was higher. Interestingly, one TCR gamma delta+ clone isolated in IL-2 was CD4+CD8-. Most of the TCR alpha beta+ and TCR gamma delta+ CTL-clones isolated in IL-2 lysed the NK cell sensitive target cell K562. In contrast, only a small proportion of the TCR alpha beta+ or TCR gamma delta+ CTL clones isolated in IL-4, lysed K562. One TCR gamma delta+ T cell clone (CD-124) isolated in IL-4 and subsequently incubated in IL-2 acquired lytic activity against K562.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
IL-4-producing gamma delta thymocytes in normal mice belong to a distinct subset of gamma delta T cells characterized by low expression of Thy-1. This gamma delta thymocyte subset shares a number of phenotypic and functional properties with the NK T cell population. Thy-1dull gamma delta thymocytes in DBA/2 mice express a restricted repertoire of TCRs that are composed of the V gamma 1 gene product mainly associated with the V delta 6.4 chain and exhibit limited junctional sequence diversity. Using mice transgenic for a rearranged V gamma 1J gamma 4C gamma 4 chain and a novel mAb (9D3) specific for the V delta 6.3 and V delta 6.4 murine TCR delta chains, we have analyzed the peripheral localization and functional properties of gamma delta T cells displaying a similarly restricted TCR repertoire. In transgenic mice, IL-4 production by peripheral gamma delta T cells was confined to the gamma delta+9D3+ subset, which contains cells with a TCR repertoire similar to that found in Thy-1dull gamma delta thymocytes. In normal DBA/2 mice such cells represent close to half of the gamma delta T cells present in the liver and around 20% of the splenic gamma delta T cells.  相似文献   

11.
T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.  相似文献   

12.
13.
To search for a potential role of TCR gamma/delta T cells in host-defense against mycobacterial infection, we analyzed the kinetics, repertoire, specificity, and cytokine production of gamma/delta T cells in the peritoneal exudate cells (PEC), lymph node (LN) cells and spleen cells during an i.p. infection with a sublethal dose (5 x 10(5) of viable Bacillus Calmétte-Guérin (BCG) in mice. In the PEC on day 7 after infection, approximately 26% of the CD3+ cells were CD4-CD8-, most of which expressed TCR gamma/delta on their surface. However, the PEC on day 28 contained an increased number of alpha/beta T cells that were CD4+8- or CD4-8+ and the proportion of gamma/delta T cells in the PEC reciprocally decreased to 18% of the CD3+ cells. The kinetics of gamma/delta and alpha/beta T cells in the LN during BCG infection showed in much the same pattern as that seen in the PEC. When purified CD4-CD8- cells in the LN on day 7 after BCG infection were cultured with sonicated BCG lysate, PPD derived from Mycobacterium tuberculosis or recombinant 65 kDa heat shock protein derived from Mycobacterium bovis, the gamma/delta T cells on this stage significantly proliferated and secreted IL-2 in response to sonicated BCG lysate and PPD but not to 65 kDa heat shock protein. V gene segment usage analysis with PCR method revealed that purified protein derivative-reactive gamma/delta T cells preferentially used V gamma 1/2/V delta 6, whereas gamma/delta T cells polyclonally expanded in response to the BCG lysate. These results suggest that gamma/delta T cells specific for mycobacterial antigens preceding alpha/beta T cells in appearance during infection may serve as a first line of defense against mycobacterial infection.  相似文献   

14.
Peripheral blood T lymphocytes from healthy donors were stimulated with Mycobacterium tuberculosis in vitro and afterward analyzed phenotypically. Marked expansion of the gamma/delta T cell population (3- to 21-fold) was observed in 15/21 donors 7 to 10 days after stimulation. In addition to M. tuberculosis, Mycobacterium leprae (six of eight) as well as the gram-positive bacteria, Staphylococcus aureus (two of six), group A streptococci (seven of nine), and Listeria monocytogenes (four of eight) augmented gamma/delta TCR expression in peripheral blood T cells of many donors. gamma/delta T lymphocytes expressed IL-2R and secreted IL-2 upon restimulation with M. tuberculosis. Stimulation with M. tuberculosis evoked specific cytolytic activities in gamma/delta T lymphocytes because: gamma/delta T cells lysed M. tuberculosis pulsed but not unpulsed targets; high concentrations of TCR delta 1 mAb facilitated killing of unpulsed target cells; and low doses of anti-TCR delta 1 mAb blocked killing of pulsed targets. Furthermore, gamma/delta T cells from four donors, after activation with M. tuberculosis or with group A streptococci, respectively, only lysed targets pulsed with the homologous agents, whereas in other donors some cross-reactivity was observed. We conclude that, upon contact with mycobacteria and perhaps other microorganisms, gamma/delta T cells are activated which contribute to immunity against infection via IL-2 secretion and specific target cell lysis.  相似文献   

15.
16.
Staphylococcal enterotoxins (SE) are known to stimulate a large proportion of T cells. SE bind to MHC-class II molecules on APC and a particular segment of certain TCR V beta and V gamma gene products. Resting human T cells do not express HLA class II Ag and therefore cannot present SE to T cells. Activated human T cells, however, do express HLA-DR, -DP, and -DQ Ag and could consequently serve as APC for SE. As such, local immune responses to SE might be regulated and/or abrogated by SE-mediated T-T cell interactions leading to T cell destruction. We have investigated if such SE-mediated T-T cell interactions can occur in vitro using human cytolytic TCR-alpha beta+ and TCR-gamma delta+ T cell clones. We demonstrate that the TCR-alpha beta+ T cell clones can efficiently present staphylococcal enterotoxin A (SEA) to each other: T cell clones coated with SEA are lysed by SEA-reactive T cell clones but not by a SEA-nonreactive T cell clone. Furthermore, the SEA-reactive TCR-alpha beta+ clones (but not the SEA-nonreactive clone) destruct themselves in the presence of SEA at low concentrations of SEA (less than 0.01 microgram/ml). Also, SEA-coated T cell clones can induce proliferative responses although such responses are much weaker than those induced when B cells are used as stimulator cells. In contrast, the SEA-reactive TCR-gamma delta+ T cell clones are resistant to autokilling in the presence of SEA and they do not lyse SEA-coated TCR-gamma delta+ targets. However, such targets can be lysed by TCR-alpha beta+ effector cells. These results indicate that TCR-gamma delta+ cells are relatively resistant to lysis and that during local nonspecific immune responses triggered by SE, which induces HLA-class II expression by the responding T cells, SE-mediated T-T cell interactions may play a role in the regulation and/or abrogation of these immune responses.  相似文献   

17.
We previously reported that gamma delta T cells appeared and could play a protective role early in infections with intracellular bacteria such as Listeria monocytogenes, Mycobacterium bovis BCG, and Salmonella choleraesuis. To extend these findings to virus infection, we examined the developmental sequence of gamma delta T cells in bronchoalveolar lavage during the course of Sendai virus infection in C57BL/6 mice. To produce a natural but nonlethal infection course as far as possible, we used a sublethal dose of a wild-type virus which had not been subjected to serial passages in a chicken embryo, hence retaining full virulence for mice. Virus titers in lungs reached a peak on day 6 and then decreased to an undetectable level by day 10. This time course of virus reproduction was immediately and coincidentally followed by the developmental course of gamma delta T cells, in which the cell number peaked on day 7 and then decreased to a marginal level by day 10. On the other hand, the alpha beta T-cell number continued to increase until day 10 and remained at a high level thereafter. The early-appearing gamma delta T cells were CD4-, CD8-, IL-2R alpha- beta+, CD44+, Mel-14-, and LFA-1 alpha/beta+ in phenotype and used V gamma 1/2 and V gamma 4 and V delta 3, V delta 4, V delta 5, and V delta 6. The gamma delta T cells were responding to macrophages from infected mice when the cells were cultured in vitro. Furthermore, the expression of endogenous heat shock protein (hsp) was infection specific, and its level appeared to correlate with the gamma delta T-cell development. These results suggest that the early recruitment of gamma delta T cells, which proliferate in response to endogenous hsp+ cells, is also characteristic of this virus infection, although this view appears to be contradictory to earlier reports.  相似文献   

18.
B, alpha beta T, and NK lymphocytes establish immunological synapses (IS) with their targets to enable recognition. Transfer of target cell-derived Ags together with proximal molecules onto the effector cell appears also to occur through synapses. Little is known about the molecular basis of this transfer, but it is assumed to result from Ag receptor internalization. Because human gamma delta T cells recognize soluble nonpeptidic phosphoantigens as well as tumor cells such as Daudi, it is unknown whether they establish IS with, and extract molecules from, target cells. Using flow cytometry and confocal microscopy, we show in this work that Ag-stimulated human V gamma 9/V delta 2 T cells conjugate to, and perform molecular transfer from, various tumor cell targets. The molecular transfer appears to be linked to IS establishment, evolves in a dose-dependent manner in the presence of either soluble or cellular Ag, and requires gamma delta TCR ligation, Src family kinase signaling, and participation of the actin cytoskeleton. Although CD45 exclusion characterized the IS performed by gamma delta T cells, no obvious capping of the gamma delta TCR was detected. The synaptic transfer mediated by gamma delta T cells involved target molecules unrelated to the cognate Ag and occurred independently of MHC class I expression by target cells. From these observations, we conclude that despite the particular features of gamma delta T cell activation, both synapse formation and molecular transfer of determinants belonging to target cell characterize gamma delta T cell recognition of Ags.  相似文献   

19.
The common gamma chain (gammac)-sharing cytokines (IL's-2, 4, 7, 9, 15, and 21) play a vital role in the survival, proliferation, differentiation and function of T lymphocytes. As such, disruption of their signaling pathways would be expected to have severe consequences on the integrity of the immune system. Indeed, it appears that the signaling network of these cytokines is both disrupted and exploited by HIV at various stages of infection. IL-2 secretion and signaling downstream of its receptor are impaired in T cells from chronically-infected HIV+ patients. Elevated plasma IL-7 levels and decreased IL-7Ralpha expression in patient T cells results in significantly decreased responsiveness to this critical cytokine. Interestingly, IL-2 and IL-15 are also able to render CD4+ T cells permissive to HIV infection through their influence on the activity of the APOBEC3G deaminase enzyme. Herein, we describe the current state of knowledge on how the gammac cytokine network is affected during HIV infection, with a focus on how this impairs CD4+ and CD8+ T cell function while also benefiting the virus itself. We also address the use of cytokines as adjuncts to highly active antiretroviral therapy to bolster immune reconstitution in infected patients.  相似文献   

20.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号