首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular basis for the transport of manganese across membranes in plant cells is poorly understood. We have found that IRT1, an Arabidopsis thaliana metal ion transporter, can complement a mutant Saccharomyces cerevisiae strain defective in high-affinity manganese uptake (smf1). The IRT1 protein has previously been identified as an iron transporter. The current studies demonstrated that IRT1, when expressed in yeast, can transport manganese as well. This manganese uptake activity was inhibited by cadmium, iron(II) and zinc, suggesting that IRT1 can transport these metals. The IRT1 cDNA also complements a zinc uptake-deficient yeast mutant strain (zrt1zrt2), and IRT1-dependent zinc transport in yeast cells is inhibited by cadmium, copper, cobalt and iron(III). However, IRT1 did not complement a copper uptake-deficient yeast mutant (ctr1), implying that this transporter is not involved in the uptake of copper in plant cells. The expression of IRT1 is enhanced in A. thaliana plants grown under iron deficiency. Under these conditions, there were increased levels of root-associated manganese, zinc and cobalt, suggesting that, in addition to iron, IRT1 mediates uptake of these metals into plant cells. Taken together, these data indicate that the IRT1 protein is a broad-range metal ion transporter in plants.  相似文献   

2.
3.
4.
Plants are the principal source of iron in most diets, yet iron availability often limits plant growth. In response to iron deficiency, Arabidopsis roots induce the expression of the divalent cation transporter IRT1. Here, we present genetic evidence that IRT1 is essential for the uptake of iron from the soil. An Arabidopsis knockout mutant in IRT1 is chlorotic and has a severe growth defect in soil, leading to death. This defect is rescued by the exogenous application of iron. The mutant plants do not take up iron and fail to accumulate other divalent cations in low-iron conditions. IRT1-green fluorescent protein fusion, transiently expressed in culture cells, localized to the plasma membrane. We also show, through promoter::beta-glucuronidase analysis and in situ hybridization, that IRT1 is expressed in the external cell layers of the root, specifically in response to iron starvation. These results clearly demonstrate that IRT1 is the major transporter responsible for high-affinity metal uptake under iron deficiency.  相似文献   

5.
6.
Dicotyledonous plants growing under limited iron availability initiate a response resulting in the solubilization, reduction, and uptake of soil iron. The protein factors responsible for these steps are transmembrane proteins, suggesting that the intracellular trafficking machinery may be involved in iron acquisition. In search for components involved in the regulation of Arabidopsis thaliana iron deficiency responses, we identified the members of the SORTING NEXIN (SNX) protein family. SNX loss-of-function plants display enhanced susceptibility to iron deficiency in comparison to the wild type. The absence of SNX led to reduced iron import efficiency into the root. SNX1 showed partial colocalization with the principal root iron importer IRON-REGULATED TRANSPORTER1 (IRT1). In SNX loss-of-function plants, IRT1 protein levels were decreased compared with the wild type due to enhanced IRT1 degradation. This resulted in diminished amounts of the IRT1 protein at the plasma membrane. snx mutants exhibited enhanced iron deficiency responses compared with the wild type, presumably due to the lower iron uptake through IRT1. Our results reveal a role of SNX1 for the correct trafficking of IRT1 and, thus, for modulating the activity of the iron uptake machinery.  相似文献   

7.
Arabidopsis IRT2 gene encodes a root-periphery iron transporter   总被引:19,自引:0,他引:19  
Iron uptake from the soil is a tightly controlled process in plant roots, involving specialized transporters. One such transporter, IRT1, was identified in Arabidopsis thaliana and shown to function as a broad-range metal ion transporter in yeast. Here we report the cloning and characterization of the IRT2 cDNA, a member of the ZIP family of metal transporters, highly similar to IRT1 at the amino-acid level. IRT2 expression in yeast suppresses the growth defect of iron and zinc transport yeast mutants and enhances iron uptake and accumulation. However, unlike IRT1, IRT2 does not transport manganese or cadmium in yeast. IRT2 expression is detected only in roots of A. thaliana plants, and is upregulated by iron deficiency. By fusing the IRT2 promoter to the uidA reporter gene, we show that the IRT2 promoter is mainly active in the external cell layers of the root subapical zone, and therefore provide the first tissue localization of a plant metal transporter. Altogether, these data support a role for the IRT2 transporter in iron and zinc uptake from the soil in response to iron-limited conditions.  相似文献   

8.
Vert GA  Briat JF  Curie C 《Plant physiology》2003,132(2):796-804
Regulation of the root high-affinity iron uptake system by whole-plant signals was investigated at the molecular level in Arabidopsis, through monitoring FRO2 and IRT1 gene expression. These two genes encode the root ferric-chelate reductase and the high-affinity iron transporter, respectively, involved in the iron deficiency-induced uptake system. Recovery from iron-deficient conditions and modulation of apoplastic iron pools indicate that iron itself plays a major role in the regulation of root iron deficiency responses at the mRNA and protein levels. Split-root experiments show that the expression of IRT1 and FRO2 is controlled both by a local induction from the root iron pool and through a systemic pathway involving a shoot-borne signal, both signals being integrated to tightly control production of the root iron uptake proteins. We also show that IRT1 and FRO2 are expressed during the day and down-regulated at night and that this additional control is overruled by iron starvation, indicating that the nutritional status prevails on the diurnal regulation. Our work suggests, for the first time to our knowledge, that like in grasses, the root iron acquisition in strategy I plants may also be under diurnal regulation. On the basis of the new molecular insights provided in this study and given the strict coregulation of IRT1 and FRO2 observed, we present a model of local and long-distance regulation of the root iron uptake system in Arabidopsis.  相似文献   

9.
10.
Iron is an essential nutrient for all organisms but toxic when present in excess. Consequently, plants carefully regulate their iron uptake, dependent on the FRO2 ferric reductase and the IRT1 transporter, to control its homeostasis. Arabidopsis IRT2 gene, whose expression is induced in root epidermis upon iron deprivation, was shown to encode a functional iron/zinc transporter in yeast, and proposed to function in iron acquisition from the soil. In this study, we demonstrate that, unlike its close homolog IRT1, IRT2 is not involved in iron absorption from the soil since overexpression of IRT2 does not rescue the iron uptake defect of irt1-1 mutant and since a null irt2 mutant shows no chlorosis in low iron. Consistently, an IRT2-green fluorescent fusion protein, transiently expressed in culture cells, localizes to intracellular vesicles. However, IRT2 appears strictly co-regulated with FRO2 and IRT1, supporting the view that IRT2 is an integral component of the root response to iron deficiency in root epidermal cells. We propose a model where IRT2 likely prevents toxicity from IRT1-dependent iron fluxes in epidermal cells, through compartmentalization.  相似文献   

11.
12.
Metal transporters regulated by iron can transport a variety of divalent metals, suggesting that iron regulation is important for specificity of iron transport. In plants, the iron-regulated broad-range metal transporter IRT1 is required for uptake of iron into the root epidermis. Functions of other iron-regulated plant metal transporters are not yet established. To deduce novel plant iron transport functions we studied the regulation of four tomato metal transporter genes belonging to the nramp and irt families with respect to environmental and genetic factors influencing iron uptake. We isolated Lenramp1 and Lenramp3 from tomato and demonstrate that these genes encode functional NRAMP metal transporters in yeast, where they were iron-regulated and localized mainly to intracellular vesicles. Lenramp1 and Leirt1 revealed both root-specific expression and up-regulation by iron deficiency, respectively, in contrast to Leirt2 and Lenramp3. Lenramp1 and Leirt1, but not Lenramp3 and Leirt2, were down-regulated in the roots of fer mutant plants deficient in a bHLH gene regulating iron uptake. In chloronerva mutant plants lacking the functional enzyme for synthesis of the plant-specific metal chelator nicotianamine Leirt1 and Lenramp1 were up-regulated despite sufficient iron supply independent of a functional fer gene. Lenramp1 was expressed in the vascular root parenchyma in a similar cellular pattern as the fer gene. However, the fer gene was not sufficient for inducing Lenramp1 and Leirt1 when ectopically expressed. Based on our results, we suggest a novel function for NRAMP1 in mobilizing iron in the vascular parenchyma upon iron deficiency in plants. We discuss fer/nicotianamine synthase-dependent and -independent regulatory pathways for metal transporter gene regulation.  相似文献   

13.
The mutants irt1-1 and irt1-2 of Arabidopsis thaliana were identified among a collection of T-DNA-tagged lines on the basis of a decrease in the effective quantum yield of photosystem II. The mutations responsible interfere with expression of IRT1, a nuclear gene that encodes the metal ion transporter IRT1. In irt1 mutants, photosensitivity and chlorophyll fluorescence parameters, as well as abundance and composition of the photosynthetic apparatus, are significantly altered. Additional effects of the mutation under greenhouse conditions, including chlorosis and a drastic reduction in growth rate and fertility, are compatible with a deficiency in iron transport. Propagation of irt1 plants on media supplemented with additional quantities of iron salts restores almost all aspects of wild-type behaviour. The irt2-1 mutant, which carries an En insertion in the highly homologous IRT2 gene of Arabidopsis thaliana, was identified by reverse genetics and shows no symptoms of iron deficiency. This, together with the finding that irt1-1 can be complemented by 35S::IRT1 but not by 35S::IRT2, demonstrates that, although the products of the two genes are closely related, only AtIRT1 is required for iron homeostasis under physiological conditions.  相似文献   

14.
All plants, except for the grasses, must reduce Fe(III) to Fe(II) in order to acquire iron. In Arabidopsis, the enzyme responsible for this reductase activity in the roots is encoded by FRO2. Two Arabidopsis mutants, frd4-1 and frd4-2, were isolated in a screen for plants that do not induce Fe(III) chelate reductase activity in their roots in response to iron deficiency. frd4 mutant plants are chlorotic and grow more slowly than wild-type Col-0 plants. Additionally, frd4 chloroplasts are smaller in size and possess dramatically fewer thylakoid membranes and grana stacks when compared with wild-type chloroplasts. frd4 mutant plants express both FRO2 and IRT1 mRNA normally in their roots under iron deficiency, arguing against any defects in systemic iron-deficiency signaling. Further, transgenic frd4 plants accumulate FRO2-dHA fusion protein under iron-deficient conditions, suggesting that the frd4 mutation acts post-translationally in reducing Fe(III) chelate reductase activity. FRO2-dHA appears to localize to the plasma membrane of root epidermal cells in both Col-0 and frd4-1 transgenic plants when grown under iron-deficient conditions. Map-based cloning revealed that the frd4 mutations reside in cpFtsY, which encodes a component of one of the pathways responsible for the insertion of proteins into the thylakoid membranes of the chloroplast. The presence of cpFtsY mRNA and protein in the roots of wild-type plants suggests additional roles for this protein, in addition to its known function in targeting proteins to the thylakoid membrane in chloroplasts.  相似文献   

15.
16.
The primary function of frataxin, a mitochondrial protein involved in iron homeostasis, remains controversial. Using a yeast model of conditional expression of the frataxin homologue YFH1, we analyzed the primary effects of YFH1 depletion. The main conclusion unambiguously points to the up-regulation of iron transport systems as a primary effect of YFH1 down-regulation. We observed that inactivation of aconitase, an iron-sulfur enzyme, occurs long after the iron uptake system has been activated. Decreased aconitase activity should be considered part of a group of secondary events promoted by iron overloading, which includes decreased superoxide dismutase activity and increased protein carbonyl formation. Impaired manganese uptake, which contributes to superoxide dismutase deficiency, has also been observed in YFH1-deficient cells. This low manganese content can be attributed to the down-regulation of the metal ion transporter Smf2. Low Smf2 levels were not observed in AFT1/YFH1 double mutants, indicating that high iron levels could be responsible for the Smf2 decline. In summary, the results presented here indicate that decreased iron-sulfur enzyme activities in YFH1-deficient cells are the consequence of the oxidative stress conditions suffered by these cells.  相似文献   

17.
Accumulation of reactive iron in acute and chronic lung disease suggests that iron-driven free radical formation could contribute to tissue injury. Safe transport and sequestration of this metal is likely to be of importance in lung defense. We provide evidence for the expression and iron-induced upregulation of the metal transporter protein-1 (MTP1) genes in human and rodent lung cells at both the protein and mRNA levels. In human bronchial epithelial cells, a 3.8-fold increase in mRNA level and a 2.4-fold increase in protein level of MTP1 were observed after iron exposure. In freshly isolated human macrophages, as much as an 18-fold increase in the MTP1 protein level was detected after incubation with an iron compound. The elevation in expression of MTP1 gene was also demonstrated in iron-instilled rat lungs and in hypotransferrinemic mouse lungs. This is similar to our previous findings with divalent metal transporter-1 (DMT1), an iron transporter that is required for iron uptake and intracellular iron trafficking. These studies suggest the presence of iron mobilization and/or detoxification pathways in the lung that are crucial for iron homeostasis and lung defense.  相似文献   

18.
Regulation of iron uptake and use is critical for plant survival and growth. We isolated an MYB gene from Malus xiaojinensis named MxMYB1, which is induced under Fe-deficient conditions. Expression of MxMYB1 was upregulated by Fe starvation in the roots but not in leaves, suggesting that MxMYB1 might play a role in iron nutrition in roots. Transgenic Arabidopsis plants expressing MxMYB1 exhibited lower iron content as compared with wild type plants under both Fe-normal (40 Μm) and Fe-deflcient conditions (Fe omitted and Ferrozine 300 Μm). However, the contents of Cu, Zn and Mn were not changed in these transgenic plants. Gene chip and real-time polymerase chain reaction analyses indicated that the expression of two Fe-related genes encoding an iron transporter AtIRT1 and an iron storage protein ferritin AtFER1 might be negatively regulated by MxMYB1 as the expression levels of these genes were lower in MxMYB1 expressing transgenic Arabidopsls plants as compared with wild type plants under both Fe-normal and Fe-deficient conditions. These results suggest that MxMYB1 may function as a negative regulator of iron uptake and storage In plants.  相似文献   

19.
The divalent metal transporter (DMT1, also known as NRAMP2 or DCT1) is the likely target for regulation of intestinal iron absorption by iron stores. We investigated changes in intestinal DMT1 expression after a bolus of dietary iron in iron-deficient Belgrade rats homozygous for the DMT1 G185R mutation (b/b) and phenotypically normal heterozygous littermates (+/b). Immunofluorescent staining with anti-DMT1 antisera showed that DMT1 was located in the brush-border membrane. Duodenal DMT1 mRNA and protein levels were six- and twofold higher, respectively, in b/b rats than in +/b rats. At 1.5 h after dietary iron intake in +/b and b/b rats, DMT1 was internalized into cytoplasmic vesicles. At 1.5 and 3 h after iron intake in +/b and b/b rats, there was a rapid decrease of DMT1 mRNA and a transient increase of DMT1 protein. The decrease of DMT1 mRNA was specific, because ferritin mRNA was unchanged. After iron intake, an increase in ferritin protein and decrease in iron-regulatory protein binding activity occurred, reflecting elevated intracellular iron pools. Thus intestinal DMT1 rapidly responds to dietary iron in both +/b and b/b rats. The internalization of DMT1 may be an acute regulatory mechanism to limit iron uptake. In addition, the results suggest that in the Belgrade rat DMT1 with the G185R mutation is not an absolute block to iron.  相似文献   

20.
Metal homeostasis is critical for the survival of living organisms, and metal transporters play central roles in maintaining metal homeostasis in the living cells. We have investigated the function of a metal transporter of the NRAMP family, AtNRAMP3, in Arabidopsis thaliana. A previous study showed that AtNRAMP3 expression is upregulated by iron (Fe) starvation and that AtNRAMP3 protein can transport Fe. In the present study, we used AtNRAMP3 promoter beta-glucoronidase (GUS) fusions to show that AtNRAMP3 is expressed in the vascular bundles of roots, stems, and leaves under Fe-sufficient conditions. This suggests a function in long-distance metal transport within the plant. Under Fe-starvation conditions, the GUS activity driven by the AtNRAMP3 promoter is upregulated without any change in the expression pattern. We analyze the impact of AtNRAMP3 disruption and overexpression on metal accumulation in plants. Under Fe-sufficient conditions, AtNRAMP3 overexpression or disruption does not lead to any change in the plant metal content. Upon Fe starvation, AtNRAMP3 disruption leads to increased accumulation of manganese (Mn) and zinc (Zn) in the roots, whereas AtNRAMP3 overexpression downregulates Mn accumulation. In addition, overexpression of AtNRAMP3 downregulates the expression of the primary Fe uptake transporter IRT1 and of the root ferric chelate reductase FRO2. Expression of AtNRAMP3::GFP fusion protein in onion cells or Arabidopsis protoplasts shows that AtNRAMP3 protein localizes to the vacuolar membrane. To account for the results presented, we propose that AtNRAMP3 influences metal accumulation and IRT1 and FRO2 gene expression by mobilizing vacuolar metal pools to the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号