首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal rates of factor X (FX) activation require occupancy of receptors for factor IXa (FIXa), factor VIII (FVIII), and FX on the activated platelet surface. The presence of FVIII and FX increases 5-fold the affinity of FIXa for the surface of activated platelets, and the presence of FVIII or FVIIIa generates a high affinity, low capacity specific FX-binding site on activated platelets. We have now examined the effects of FX and active site-inhibited FIXa (EGR-FIXa) on the binding of both FVIII and FVIIIa to activated platelets and show the following: (a) von Willebrand factor inhibits FVIII binding (K(i) = 0.54 nM) but not FVIIIa binding; (b) thrombin and the thrombin receptor activation peptide (SFLLRN amide) are the most potent agonists required for FVIII-binding site expression, whereas ADP is inert; (c) FVa does not compete with FVIIIa or FVIII for functional platelet-binding sites; and (d) Annexin V is a potent inhibitor of FVIIIa binding (IC(50) = 10 nM) to activated platelets. The A2 domain of FVIII significantly increases the affinity and stoichiometry of FVIIIa binding to platelets and contributes to the stability of the FX-activating complex. Both FVIII and FVIIIa binding were specific, saturable, and reversible. FVIII binds to specific, high affinity receptors on activated platelets (n = 484 +/- 59; K(d) = 3.7 +/- 0.31 nM) and FVIIIa interacts with an additional 300-500 sites per platelet with enhanced affinity (K(d) = 1.5 +/- 0.11 nM). FVIIIa binding to activated platelets in the presence of FIXa and FX is closely coupled with rates of F-X activation. The presence of EGR-FIXa and FX increases both the number and the affinity of binding sites on activated platelets for both FVIII and FVIIIa, emphasizing the validity of a three-receptor model in the assembly of the F-X-activating complex on the platelet surface.  相似文献   

2.
Ahmad SS  Walsh PN 《Biochemistry》2005,44(42):13858-13865
Optimal rates of factor X (FX) activation require binding of factor IXa (FIXa), factor VIII(a) [FVIII(a)], and FX to activated platelet receptors. To define the FVIIIa domains that mediate platelet interactions, albumin density gradient washed, gel-filtered platelets (3.5 x 10(8)/mL) activated by the thrombin receptor peptide, SFLLRN (25 microM), were incubated with 125I-labeled FVIII C2 domain, or 125I-FVIIIa, or 125I-FVIII((LC)), or peptides from the C2 domain region, with or without anti-C2 domain monoclonal antibodies (MoAb), ESH4 or ESH8. FVIIIa (Kd approximately 1.7 nM), FVIII((LC)) (Kd approximately 3 nM), and the C2 domain (Kd approximately 16 nM) all interacted with approximately 700-800 binding sites/platelet. Unlike FVIIIa, the C2 domain did not respond to the presence of excess EGR-FIXa (45 nM) and FX (1.5 microM) with enhanced binding stoichiometry and affinity. Both the MoAb ESH4 and a synthetic peptide corresponding to FVIII residues 2303-2332 (epitope for FVIII MoAb, ESH4) inhibited FVIIIa binding to platelets, whereas MoAb ESH8 and a C2 domain peptide corresponding to residues 2248-2285 (epitope for the FVIII MoAb, ESH8) failed to inhibit FVIIIa binding. Thus, a major platelet-binding site resides within residues 2303-2332 in the C2 domain of FVIIIa, and an additional site within residues 2248-2285 increases the stoichiometry and affinity of FVIIIa binding to activated platelets only in the presence of FIXa and FX but does not directly mediate FVIIIa binding to the platelet surface.  相似文献   

3.
Factor VIII (FVIII, other clotting factors are named similarly) is a glycoprotein that circulates in the plasma bound to von Willebrand factor. During the blood coagulation cascade, activated FVIII (FVIIIa) binds to FIXa and activates FX in the presence of calcium ions and phospholipid membranes. The C1 and C2 domains mediate membrane binding that is essential for activation of the FVIIIa–FIXa complex. Here, 1H, 13C, and 15N backbone chemical shift assignments are reported for the C2 domain of FVIII, including assignments for the residues in solvent-exposed loops. The NMR resonance assignments, along with further structural studies of membrane-bound FVIII, will advance understanding of blood-clotting protein interactions.  相似文献   

4.
During hemostasis the zymogen factor X (FX) is converted into its enzymatically active form factor Xa by the intrinsic FX-activating complex. This complex consists of the protease factor IXa (FIXa) that assembles, together with its cofactor, factor VIIIa, on a phospholipid surface. We have studied the functional properties of a FIXa-specific monoclonal antibody, 224AE3, which has the potential to enhance intrinsic FX activation. Binding of the antibody to FIXa improved the catalytic properties of the intrinsic FX-activating complex in two ways: (i) factor VIIIa bound to the FIXa-antibody complex with a more than 18-fold higher affinity than to FIXa, and (ii) the turnover number (kcat) of the enzyme complex increased 2- to 3-fold whereas the Km for FX remained unaffected. The ability of 224AE3 to increase the FXa-generation potential (called the "booster effect") was confirmed in factor VIII (FVIII)-depleted plasma, which was supplemented with different amounts of recombinant FVIII. In the presence of antibody 224AE3 the coagulant activity was increased 2-fold at physiological FVIII concentration and up to 15-fold at low FVIII concentrations. The booster effect that we describe demonstrates the ability of antibodies to function as an additional cofactor in an enzymatic reaction and might open up a new principle for improving the treatment of hemophilia.  相似文献   

5.
Factor (F) VIII consists of a heavy chain (A1A2B domains) and light chain (A3C1C2 domains). The activated form of FVIII, FVIIIa, functions as a cofactor for FIXa in catalyzing the membrane-dependent activation of FX. Whereas the FVIII C2 domain is believed to anchor FVIIIa to the phospholipid surface, recent x-ray crystal structures of FVIII suggest that the C1 domain may also contribute to this function. We constructed a FVIII variant lacking the C2 domain (designated ΔC2) to characterize the contributions of the C1 domain to function. Binding affinity of the ΔC2 variant to phospholipid vesicles as measured by energy transfer was reduced ∼14-fold. However, the activity of ΔC2 as measured by FXa generation and one-stage clotting assays retained 76 and 36%, respectively, of the WT FVIII value. Modest reductions (∼4-fold) were observed in the functional affinity of ΔC2 FVIII for FIXa and rates of thrombin activation. On the other hand, deletion of C2 resulted in significant reductions in FVIIIa stability (∼3.6-fold). Thrombin generation assays showed peak thrombin and endogenous thrombin potential were reduced as much as ∼60-fold. These effects likely result from a combination of the intermolecular functional defects plus reduced protein stability. Together, these results indicate that FVIII domains other than C2, likely C1, make significant contributions to membrane-binding and membrane-dependent function.  相似文献   

6.
Factors VII, IX, and X play key roles in blood coagulation. Each protein contains an N-terminal gamma-carboxyglutamic acid domain, followed by EGF1 and EGF2 domains, and the C-terminal serine protease domain. Protein C has similar domain structure and functions as an anticoagulant. During physiologic clotting, the factor VIIa-tissue factor (FVIIa*TF) complex activates both factor IX (FIX) and factor X (FX). FVIIa represents the enzyme, and TF represents the membrane-bound cofactor for this reaction. The substrates FIX and FX may utilize multiple domains in binding to the FVIIa*TF complex. To investigate the role of the EGF1 domain in this context, we expressed wild type FIX (FIX(WT)), FIX(Q50P), FIX(PCEGF1) (EGF1 domain replaced with that of protein C), FIX(DeltaEGF1) (EGF1 domain deleted), FX(WT), and FX(PCEGF1). Complexes of FVIIa with TF as well as with soluble TF (sTF) lacking the transmembrane region were prepared, and activations of WT and mutant proteins were monitored by SDS-PAGE and by enzyme assays. FVIIa*TF or FVIIa*sTF activated each mutant significantly more slowly than the FIX(WT) or FX(WT). Importantly, in ligand blot assays, FIX(WT) and FX(WT) bound to sTF, whereas mutants did not; however, all mutants and WT proteins bound to FVIIa. Further experiments revealed that the affinity of the mutants for sTF was reduced 3-10-fold and that the synthetic EGF1 domain (of FIX) inhibited FIX binding to sTF with K(i) of approximately 60 microm. Notably, each FIXa or FXa mutant activated FVII and bound to antithrombin, normally indicating correct folding of each protein. In additional experiments, FIXa with or without FVIIIa activated FX(WT) and FX(PCEGF1) normally, which is interpreted to mean that the EGF1 domain of FX does not play a significant role in its interaction with FVIIIa. Cumulatively, our data reveal that substrates FIX and FX in addition to interacting with FVIIa (enzyme) interact with TF (cofactor) using, in part, the EGF1 domain.  相似文献   

7.
Previously we have determined that residues 88-109 (but not Arg(94)) in the second epidermal growth factor (EGF2)-like domain of factor IXa (FIXa) are important for assembly of the factor X (FX) activating complex on phospholipid vesicles (Wilkinson, F. H., London, F. S., and Walsh, P. N. (2002) J. Biol. Chem. 277, 5725-5733). Here we report that these residues are important for platelet binding affinity, stoichiometry, and assembly of the FX activating complex. We prepared several chimeric FIXa proteins using homologous sequences from factor VII (FVII): FIXa(FVIIEGF2) (FIX Delta 88-124,inverted Delta FVII91-127), FIXa(loop1) (FIX Delta 88-99,inverted Delta FVII91-102), FIXa(loop2) (FIX Delta 95-109,inverted Delta FVII98-112), and FIXa(loop3) (FIX Delta 111-124,inverted Delta FVII114-127) and tested their ability to bind to thrombin-activated platelets. Binding affinities (K(d) values in 10(-9) m) for the proteins were as follows in the presence and absence of FVIIIa, respectively: FIXa(N) (0.55 +/- 0.06, 2.9 +/- 0.45), FIXa(WT) (0.80 +/- 0.08, 3.5 +/- 0.5), FIXa(loop1) (19 +/- 4.0, 27 +/- 5.0), FIXa(loop2) (35 +/- 9.0, 65 +/- 12.0), and FIXa(loop3) (1.1 +/- 0.09, 5.0 +/- 0.90). These K(d) values are in good agreement with K((d)(app)) values (in 10(-9) m) determined from the activation of FX (in the presence and absence of FVIIIa, respectively): FIXa(N) (0.46 +/- 0.05, 1.40 +/- 0.14), FIXa(WT) (0.72 +/- 0.08, 3.8 +/- 0.08), FIXa(loop1) (3.2 +/- 0.72, 14.0 +/- 1.60), FIXa(loop2) (18.4 +/- 1.60, 26.3 +/- 3.40), and FIXa(loop3) (0.7 +/- 0.05, 3.0 +/- 0.15). Moreover, the stoichiometry of binding (sites/platelet) showed an agreement with V(max) of FX activation and was reduced in those proteins that also showed a decreased platelet binding affinity. A peptide corresponding to the FIX EGF2 domain (Leu(84)-Val(128)) was an effective inhibitor of FIXa binding to platelets in both the presence (K(i) = 0.7 x 10(-6) m) and the absence (K(i) = 1.5 x 10(-6) m) of FVIIIa and FX. We conclude that residues 88-109 of the FIXa EGF2 domain mediate binding to platelets and assembly of the FX activating complex.ut not Ar  相似文献   

8.
BackgroundFactor (F)VIII functions as a cofactor in the tenase complex responsible for conversion of FX to FXa by FIXa. Earlier studies indicated that one of the FIXa-binding sites is located in residues 1811–1818 (crucially F1816) of the FVIII A3 domain. A putative, three-dimensional structure model of the FVIIIa molecule suggested that residues 1790–1798 form a V-shaped loop, and juxtapose residues 1811–1818 on the extended surface of FVIIIa.AimTo examine FIXa molecular interactions in the clustered acidic sites of FVIII including residues 1790–1798.Methods and resultsSpecific ELISA's demonstrated that the synthetic peptides, encompassing residues 1790–1798 and 1811–1818, competitively inhibited the binding of FVIII light chain to active-site-blocked Glu-Gly-Arg-FIXa (EGR-FIXa) (IC50; 19.2 and 42.9 μM, respectively), in keeping with a possible role for the 1790–1798 in FIXa interactions. Surface plasmon resonance-based analyses demonstrated that variants of FVIII, in which the clustered acidic residues (E1793/E1794/D1793) or F1816 contained substituted alanine, bound to immobilized biotin labeled-Phe-Pro-Arg-FIXa (bFPR-FIXa) with a 1.5–2.2-fold greater KD compared to wild-type FVIII (WT). Similarly, FXa generation assays indicated that E1793A/E1794A/D1795A and F1816A mutants increased the Km by 1.6–2.8-fold relative to WT. Furthermore, E1793A/E1794A/D1795A/F1816A mutant showed that the Km was increased by 3.4-fold and the Vmax was decreased by 0.75-fold, compared to WT. Molecular dynamics simulation analyses revealed the subtle changes between WT and E1793A/E1794A/D1795A mutant, supportive of the contribution of these residues for FIXa interaction.ConclusionThe 1790–1798 region in the A3 domain, especially clustered acidic residues E1793/E1794/D1795, contains a FIXa-interactive site.  相似文献   

9.
Factor VIII (FVIII) is the blood coagulation protein which when defective or deficient causes for hemophilia A, a severe hereditary bleeding disorder. Activated FVIII (FVIIIa) is the cofactor to the serine protease factor IXa (FIXa) within the membrane‐bound Tenase complex, responsible for amplifying its proteolytic activity more than 100,000 times, necessary for normal clot formation. FVIII is composed of two noncovalently linked peptide chains: a light chain (LC) holding the membrane interaction sites and a heavy chain (HC) holding the main FIXa interaction sites. The interplay between the light and heavy chains (HCs) in the membrane‐bound state is critical for the biological efficiency of FVIII. Here, we present our cryo‐electron microscopy (EM) and structure analysis studies of human FVIII‐LC, when helically assembled onto negatively charged single lipid bilayer nanotubes. The resolved FVIII‐LC membrane‐bound structure supports aspects of our previously proposed FVIII structure from membrane‐bound two‐dimensional (2D) crystals, such as only the C2 domain interacts directly with the membrane. The LC is oriented differently in the FVIII membrane‐bound helical and 2D crystal structures based on EM data, and the existing X‐ray structures. This flexibility of the FVIII‐LC domain organization in different states is discussed in the light of the FVIIIa–FIXa complex assembly and function. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 448–459, 2013.  相似文献   

10.
Coagulation factor X (FX) zymogen activation by factor IXa (FIXa) enzyme plays a critical role in the middle-phase of coagulation cascade. The activation process is catalytically inert and requires FIXa binding and complex formation with co-factor VIIIa (FVIIIa). In order to understand the structural details of the FVIIIa:FIXa complex, we employed knowledge-driven protein–protein docking and aqueous-phase MD refinement methods to develop a stable structural complex between FVIIIa and FIXa. The model shows that all four domains of FIXa wrap across FVIIIa that spans the co-factor binding surface of A2, A3 and C1 domains. The region surrounding the 558-helix of the A2-domain of FVIIIa is predicted to be the key interaction site with the helical segments of Lys293–Lys301 and Asp332–Arg338 residues of the serine-protease domain of FIXa. The hydrophobic helical stack between the GLA and EGF1 domains of FIXa is predicted to be primary interacting region with the A3–C2 domain interface of FVIIIa.  相似文献   

11.
Factor VIII (FVIII) is the nonproteolytic cofactor for FIXa in the tenase complex of blood coagulation. FVIII is proteolytically activated by thrombin and FXa in vitro to form a heterotrimer with full procoagulant activity. Activated protein C inactivates thrombin-activated FVIII through cleavage adjacent to position Arg 336 in the cofactor. We have investigated the interaction of FIXa and FVIII and subjected FVIII polypeptides to N-terminal amino acid sequence analysis. Contrary to previous reports, we were unable to demonstrate the activation of FVIII by FIXa. Incubation of these two proteins at equimolar or close to equimolar concentrations resulted in the inactivation of FVIII, coincident with cleavage of the FVIII heavy chain adjacent to Arg 336 and the light chain adjacent to Arg 1719. These cleavages were detected in the presence or absence of thrombin, indicating that FIXa does not stabilize thrombin-activated FVIIIa. APC cleaved FVIII at the same position in the heavy chain, and simultaneous incubation of FVIII, APC, and FIXa did not result in stabilization of the cofactor. We conclude that FIXa does not play a role in the stabilization or activation of FVIII.  相似文献   

12.
A recent chemical footprinting study in our laboratory suggested that region 1803–1818 might contribute to A2 domain retention in activated factor VIII (FVIIIa). This site has also been implicated to interact with activated factor IX (FIXa). Asn-1810 further comprises an N-linked glycan, which seems incompatible with a role of the amino acids 1803–1818 for FIXa or A2 domain binding. In the present study, FVIIIa stability and FIXa binding were evaluated in a FVIII-N1810C variant, and two FVIII variants in which residues 1803–1810 and 1811–1818 are replaced by the corresponding residues of factor V (FV). Enzyme kinetic studies showed that only FVIII/FV 1811–1818 has a decreased apparent binding affinity for FIXa. Flow cytometry analysis indicated that fluorescent FIXa exhibits impaired complex formation with only FVIII/FV 1811–1818 on lipospheres. Site-directed mutagenesis revealed that Phe-1816 contributes to the interaction with FIXa. To evaluate FVIIIa stability, the FVIII/FV chimeras were activated by thrombin, and the decline in cofactor function was followed over time. FVIII/FV 1803–1810 and FVIII/FV 1811–1818 but not FVIII-N1810C showed a decreased FVIIIa half-life. However, when the FVIII variants were activated in presence of FIXa, only FVIII/FV 1811–1818 demonstrated an enhanced decline in cofactor function. Surface plasmon resonance analysis revealed that the FVIII variants K1813A/K1818A, E1811A, and F1816A exhibit enhanced dissociation after activation. The results together demonstrate that the glycan at 1810 is not involved in FVIII cofactor function, and that Phe-1816 of region 1811–1818 contributes to FIXa binding. Both regions 1803–1810 and 1811–1818 contribute to FVIIIa stability.  相似文献   

13.
We previously reported that the first epidermal growth factor-like (EGF1) domain in factor X (FX) or factor IX (FIX) plays an important role in the factor VIIa/tissue factor (FVIIa/TF)-induced coagulation. To assess the role of gamma-carboxyglutamic acid (Gla) domains of FX and FIX in FVIIa/TF induced coagulation, we studied four new and two previously described replacement mutants: FX(PCGla) and FIX(PCGla) (Gla domain replaced with that of protein C), FX(PCEGF1) and FIX(PCEGF1) (EGF1 domain replaced with that of protein C), as well as FX(PCGla/EGF1) and FIX(PCGla/EGF1) (both Gla and EGF1 domains replaced with those of protein C). FVIIa/TF activation of each FX mutant and the corresponding reciprocal activation of FVII/TF by each FXa mutant were impaired. In contrast, FVIIa/TF activation of FIX(PCGla) was minimally affected, and the reciprocal activation of FVII/TF by FIXa(PCGla) was normal; however, both reactions were impaired for the FIX(PCEGF1) and FIX(PCGla/EGF1) mutants. Predictably, FXIa activation of FIX(PCEGF1) was normal, whereas it was impaired for the FIX(PCGla) and FIX(PCGla/EGF1) mutants. Molecular models reveal that alternate interactions exist for the Gla domain of protein C such that it is comparable with FIX but not FX in its binding to FVIIa/TF. Further, additional interactions exist for the EGF1 domain of FX, which are not possible for FIX. Importantly, a seven-residue insertion in the EGF1 domain of protein C prevents its interaction with FVIIa/TF. Cumulatively, our data provide a molecular framework demonstrating that the Gla and EGF1 domains of FX interact more strongly with FVIIa/TF than the corresponding domains in FIX.  相似文献   

14.
Factor VIII (FVIII) consists of a heavy chain (A1(a1)A2(a2)B domains) and light chain ((a3)A3C1C2 domains). To gain insights into a role of the FVIII C domains, we eliminated the C1 domain by replacing it with the homologous C2 domain. FVIII stability of the mutant (FVIIIC2C2) as measured by thermal decay at 55 °C of FVIII activity was markedly reduced (∼11-fold), whereas the decay rate of FVIIIa due to A2 subunit dissociation was similar to WT FVIIIa. The binding affinity of FVIIIC2C2 for phospholipid membranes as measured by fluorescence resonance energy transfer was modestly lower (∼2.8-fold) than that for WT FVIII. Among several anti-FVIII antibodies tested (anti-C1 (GMA8011), anti-C2 (ESH4 and ESH8), and anti-A3 (2D2) antibody), only ESH4 inhibited membrane binding of both WT FVIII and FVIIIC2C2. FVIIIa cofactor activity measured in the presence of each of the above antibodies was examined by FXa generation assays. The activity of WT FVIIIa was inhibited by both GMA8011 and ESH4, whereas the activity of FVIIIC2C2 was inhibited by both the anti-C2 antibodies, ESH4 and ESH8. Interestingly, factor IXa (FIXa) binding affinity for WT FVIIIa was significantly reduced in the presence of GMA8011 (∼10-fold), whereas the anti-C2 antibodies reduced FIXa binding affinity of FVIIIC2C2 variant (∼4-fold). Together, the reduced stability plus impaired FIXa interaction of FVIIIC2C2 suggest that the C1 domain resides in close proximity to FIXa in the FXase complex and contributes a critical role to FVIII structure and function.  相似文献   

15.
Factor VIII, the plasma protein deficient or defective in individuals with hemophilia A, is a critical member of the blood coagulation cascade. Recent studies have identified the FVIII light chain region Glu1811-Lys1818 as being involved in FIXa binding and in the assembly of the FX-activating FIXaz–FVIIIa complex. Based on this, a series of 12 peptides, analogues of the 1811–1818 loop of the A3 subunit of the light chain A3-C1–C2 of FVIIIa, were synthesized and evaluated for their anticoagulant activity. Only peptide Ac-ETKTYFWK-NH2 showed significant anticoagulant activity by inhibiting about 40% factor VIII at a concentration of 0.43 mM. It also showed a prolongation of activated partial thromboplastin time of 6.1 s, whereas its effect on prothrombin time measurements was meaningless. All the other peptides did not show any measurable effect at the concentration of 0.43 mM. These findings are encouraging though further investigation of the effect of this active peptide in different biological settings is needed in order to evaluate its possible clinical applications.  相似文献   

16.
Activated platelets and phospholipid vesicles promote assembly of the intrinsic factor X (FX) activating complex by presenting high-affinity binding sites for blood coagulation FIXa, FVIIIa, and FX. Previous reports suggest that the second epidermal growth factor (EGF)-like domain of FIXa mediates assembly of the FX activating complex (Ahmad, S. S., Rawala, R., Cheung, W. F., Stafford, D. W., and Walsh, P. N. (1995) Biochem. J. 310, 427-431; Wong, M. Y., Gurr, J. A., and Walsh, P. N. (1999) Biochemistry 38, 8948-8960). To identify important residues, we prepared several chimeric FIXa proteins using homologous sequences from FVII: FIXa(FVIIEGF2) (FIX Delta 88-124,inverted Delta FVII91-127), FIXa(loop1) (FIX Delta 88-99,inverted Delta FVII91-102), FIXa(loop2) (FIX Delta 95-109,inverted Delta FVII98-112), FIXa(loop3) (FIX Delta 111-124,inverted Delta FVII114-127), and point mutants (FIXaR94D and FIXa(loop1)G94R). In the presence and absence of FVIIIa, a 2- to 10-fold reduced V(max) of FX activation (nm FXa min(-1)) was observed for FIXa(FVIIEGF2), FIXa(loop1), FIXa(loop2), and FIXa(loop1)G94R, whereas FIXa(loop3) and FIXaR94D were normal. For all of the FIXa proteins, K(m)((app)) values were normal as were EC(50) values for interactions with FVIIIa. However, K(d)((app)) (in nm) for the FX activating complex assembled on phospholipid vesicles was increased for FIXa(FVIIEGF2) (43.3 +/- 2.70), FIXa(loop1)(10.9 +/- 2.8), FIXa(loop2) (70.5 +/- 1.60), and FIXa(loop1)G94R (17.1 +/- 2.90) relative to FIXa(N) (3.9 +/- 0.11), FIXa(WT) (4.6 +/- 0.17), FIXa(loop3) (4.5 +/- 0.20), and FIXaR94D (2.2 +/- 0.09) suggesting that reduced V(max) is a result of impaired complex assembly. These data indicate that residues 88-109 (but not Arg(94)) are important for normal assembly of the FX activating complex on phospholipid vesicles.  相似文献   

17.
Factor (F) VIII functions as a cofactor in FXase, markedly accelerating the rate of FIXa-catalyzed activation of FX. Earlier work identified a FX-binding site having μM affinity within the COOH-terminal region of the FVIIIa A1 subunit. In the present study, surface plasmon resonance (SPR), ELISA-based binding assays, and chemical cross-linking were employed to assess an interaction between FX and the FVIII light chain (A3C1C2 domains). SPR and ELISA-based assays showed that FVIII LC bound to immobilized FX (K(d) = 165 and 370 nM, respectively). Furthermore, active site-modified activated protein C (DEGR-APC) effectively competed with FX in binding FVIII LC (apparent K(i) = 82.7 nM). Western blotting revealed that the APC-catalyzed cleavage rate at Arg(336) was inhibited by FX in a concentration-dependent manner. A synthetic peptide comprising FVIII residues 2007-2016 representing a portion of an APC-binding site blocked the interaction of FX and FVIII LC (apparent K(i) = 152 μM) and directly bound to FX (K(d) = 7.7 μM) as judged by SPR and chemical cross-linking. Ala-scanning mutagenesis of this sequence revealed that the A3C1C2 subunit derived from FVIII variants Thr2012Ala and Phe2014Ala showed 1.5- and 1.8-fold increases in K(d) for FX, whereas this value using the A3C1C2 subunit from a Thr2012Ala/Leu2013Ala/Phe2014Ala triple mutant was increased >4-fold. FXase formed using this LC triple mutant demonstrated an ~4-fold increase in the K(m) for FX. These results identify a relatively high affinity and functional FX site within the FVIIIa A3C1C2 subunit and show a contribution of residues Thr2012 and Phe2014 to this interaction.  相似文献   

18.
Activated platelets promote intrinsic factor X-activating complex assembly by presenting high affinity, saturable binding sites for factor IXa mediated by two disulfide-constrained loop structures (loop 1, Cys88-Cys99; loop 2, Cys95-Cys109) within the second epidermal growth factor (EGF2) domain. To identify amino acids essential for factor X activation complex assembly, recombinant factor IXa point mutants in loop 1 (N89A, I90A, K91A, and R94A) and loop 2 (D104A, N105A, and V107A) were prepared. All seven mutants were similar to the native factor IXa by SDS-PAGE, active site titration, and content of gamma-carboxyglutamic acid residues. Kinetic constants obtained by either titrating factor X or factor VIIIa on SFLLRN-activated platelets or phospholipid vesicles revealed near normal values of Km(app) and Kd(app)FVIIIa for all mutants, indicating normal substrate and cofactor binding. In a factor Xa generation assay in the presence of activated platelets and cofactor factor VIIIa, compared with native factor IXa (Kd(app)FIXa approximately 1.1 nm, Vmax approximately 12 nm min(-1)), N89A displayed an increase of approximately 20-fold in Kd(app)FIXa and a decrease of approximately 20-fold in Vmax; I90A had an increase of approximately 5-fold in Kd(app)FIXa and approximately 10-fold decrease in Vmax; and V107A had an increase of approximately 3-fold in Kd(app)FIXa and approximately 4-fold decrease in Vmax. We conclude that residues Asn89, Ile90, and Val107 within loops 1 and 2 (Cys88-Cys109) of the EGF2 domain of factor IXa are essential for normal interactions with the platelet surface and for the assembly of the factor X-activating complex on activated platelets.  相似文献   

19.
Prothrombin is proteolytically activated by the prothrombinase complex comprising the serine protease Factor (F) Xa complexed with its cofactor, FVa. Based on inhibition of the prothrombinase complex by synthetic peptides, FVa residues 493-506 were proposed as a FXa binding site. FVa is homologous to FVIIIa, the cofactor for the FIXa protease, in the FX-activating complex, and FVIIIa residues 555-561 (homologous to FVa residues 499-506) are recognized as a FIXa binding sequence. To test the hypothesis that FVa residues 499-505 contribute to FXa binding, we created the FVa loop swap mutant (designated 499-505(VIII) FV) with residues 499-505 replaced by residues 555-561 of FVIIIa, which differ at five of seven positions. Based on kinetic measurements and spectroscopic titrations, this FVa loop swap mutant had significantly reduced affinity for FXa. The fully formed prothrombinase complex containing this FVa mutant had fairly normal kinetic parameters (k(cat) and K(m)) for cleavage of prothrombin at Arg-320. However, small changes in both Arg-320 and Arg-271 cleavage rates result together in a moderate change in the pathway of prothrombin activation. Although residues 499-505 directly precede the Arg-506 cleavage site for activated protein C (APC), the 499-505(VIII) FVa mutant was inactivated entirely normally by APC. These results suggest that this A2 domain sequence of the FVa and FVIIIa cofactors evolved to have different specificity for binding FXa and FIXa while retaining compatibility as substrate for APC. In an updated three-dimensional model for the FVa structure, residues 499-505, along with Arg-506, Arg-306, and other previously suggested FXa binding sequences, delineate a continuous surface on the A2 domain that is strongly implicated as an extended FXa binding surface in the prothrombinase complex.  相似文献   

20.
During blood coagulation, factor IXa (FIXa) activates factor X (FX) requiring Ca2+, phospholipid, and factor VIIIa (FVIIIa). The serine protease domain of FIXa contains a Ca2+ site and is predicted to contain a Na+ site. Comparative homology analysis revealed that Na+ in FIXa coordinates to the carbonyl groups of residues 184A, 185, 221A, and 224 (chymotrypsin numbering). Kinetic data obtained at several concentrations of Na+ and Ca2+ with increasing concentrations of a synthetic substrate (CH3-SO2-d-Leu-Gly-Arg-p-nitroanilide) were fit globally, assuming rapid equilibrium conditions. Occupancy by Na+ increased the affinity of FIXa for the synthetic substrate, whereas occupancy by Ca2+ decreased this affinity but increased k(cat) dramatically. Thus, Na+-FIXa-Ca2+ is catalytically more active than free FIXa. FIXa(Y225P), a Na+ site mutant, was severely impaired in Na+ potentiation of its catalytic activity and in binding to p-aminobenzamidine (S1 site probe) validating that substrate binding in FIXa is linked positively to Na+ binding. Moreover, the rate of carbamylation of NH2 of Val16, which forms a salt-bridge with Asp194 in serine proteases, was faster for FIXa(Y225P) and addition of Ca2+ overcame this impairment only partially. Further studies were aimed at delineating the role of the FIXa Na+ site in macromolecular catalysis. In the presence of Ca2+ and phospholipid, with or without saturating FVIIIa, FIXa(Y225P) activated FX with similar K(m) but threefold reduced k(cat). Further, interaction of FVIIIa:FIXa(Y225P) was impaired fourfold. Our previous data revealed that Ca2+ binding to the protease domain increases the affinity of FIXa for FVIIIa approximately 15-fold. The present data indicate that occupancy of the Na+ site further increases the affinity of FIXa for FVIIIa fourfold and k(cat) threefold. Thus, in the presence of Ca2+, phospholipid, and FVIIIa, binding of Na+ to FIXa increases its biologic activity by approximately 12-fold, implicating its role in physiologic coagulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号