首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RNA-binding protein Sam68 is involved in apoptosis, but its cellular mRNA targets and its mechanism of action remain unknown. We demonstrate that Sam68 binds the mRNA for Bcl-x and affects its alternative splicing. Depletion of Sam68 by RNA interference caused accumulation of antiapoptotic Bcl-x(L), whereas its up-regulation increased the levels of proapoptotic Bcl-x(s). Tyrosine phosphorylation of Sam68 by Fyn inverted this effect and favored the Bcl-x(L) splice site selection. A point mutation in the RNA-binding domain of Sam68 influenced its splicing activity and subnuclear localization. Moreover, coexpression of ASF/SF2 with Sam68, or fusion with an RS domain, counteracted Sam68 splicing activity toward Bcl-x. Finally, Sam68 interacted with heterogenous nuclear RNP (hnRNP) A1, and depletion of hnRNP A1 or mutations that impair this interaction attenuated Bcl-x(s) splicing. Our results indicate that Sam68 plays a role in the regulation of Bcl-x alternative splicing and that tyrosine phosphorylation of Sam68 by Src-like kinases can switch its role from proapoptotic to antiapoptotic in live cells.  相似文献   

2.
细胞通过基因表达调控来应对外界刺激,其中影响mRNA稳定性及翻译效率的转录后调控发挥重要作用。RNA结合蛋白(RNA binding proteins, RBPs)是介导转录后调控的重要分子,Sam68(SRC associated in mitosis of 68 kD)是集信号转导特性与RNA激活功能于一身的RNA结合蛋白,参与转录、可变剪接及核输出等mRNA 的代谢过程,且Sam68可通过信号通路参与细胞应答、细胞周期调控和疾病发生等。最新研究表明,Sam68可通过非编码RNAs(noncoding RNA, ncRNAs)参与表观遗传、转录与转录后调控。本文在介绍Sam68结构和转录后修饰的基础上,着重讨论Sam68在信号转导、可变剪接、ncRNAs代谢、疾病发生等方面的最新研究进展。  相似文献   

3.
Sam68, Src associated in mitosis of 68 kDa, is a known RNA-binding protein and a signaling adaptor protein for tyrosine kinases. However, the proteins associated with Sam68 and the existence of a Sam68 complex, its mass, and regulation are, however, unknown. Herein we identify a large Sam68 complex with a mass >1 MDa in HeLa cells that is composed of ∼40 proteins using an immunoprecipitation followed by a mass spectrometry approach. Many of the proteins identified are RNA-binding proteins and are known components of a previously identified structure termed the spreading initiation center. The large Sam68 complex is a ribonucleoprotein complex, as treatment with RNases caused a shift in the molecular mass of the complex to 200–450 kDa. Moreover, treatment of HeLa cells with phorbol 12-myristate 13-acetate or epidermal growth factor induced the disassociation of Sam68 from the large complex and the appearance of Sam68 within the smaller complex. Actually, in certain cell lines such as breast cancer cell lines MCF-7 and BT-20, Sam68 exists in equilibrium between a large and a small complex. The appearance of the small Sam68 complex in cells correlates with the ability of Sam68 to promote the alternative splicing of CD44 and cell migration. Our findings show that Sam68 exists in equilibrium in transformed cells between two complexes and that extracellular signals, such as epidermal growth factor stimulation, promote alternative splicing by modulating the composition of the Sam68 complex.  相似文献   

4.
5.
Identification of cellular mRNA targets for RNA-binding protein Sam68   总被引:5,自引:0,他引:5  
  相似文献   

6.
7.
Sam68 is an RNA-binding protein that contains a heterogeneous nuclear ribonucleoprotein K homology domain embedded in a larger RNA binding domain called the GSG (GRP33, Sam68, GLD-1) domain. This family of proteins is often referred to as the STAR (signal transduction and activators of RNA metabolism) proteins. It is not known whether Sam68 is a general nonspecific RNA-binding protein or whether it recognizes specific response elements in mRNAs with high affinity. Sam68 has been shown to bind homopolymeric RNA and a synthetic RNA sequence called G8-5 that has a core UAAA motif. Here we performed a structure function analysis of Sam68 and identified two arginine glycine (RG)-rich regions that confer nonspecific RNA binding to the Sam68 GSG domain. In addition, by using chimeric proteins between Sam68 and QKI-7, we demonstrated that one of the Sam68 RG-rich sequences of 26 amino acids was sufficient to confer homopolymeric RNA binding to the GSG domain of QKI-7, another STAR protein. Furthermore, that minimal sequence can also give QKI-7 the ability (as Sam68) to functionally substitute for HIV-1 REV to facilitate the nuclear export of RNAs. Our studies suggest that neighboring RG-rich sequences may impose nonspecific RNA binding to GSG domains. Because the Sam68 RNA binding activity is negatively regulated by tyrosine phosphorylation, our data lead us to propose that Sam68 might be a specific RNA-binding protein when tyrosine phosphorylated.  相似文献   

8.
9.
Sam68 (Src-associated during mitosis, 68 kDa) is a prototypical member of the STAR (signal transducer and activator of RNA) family of RNA-binding proteins. STAR proteins bind mRNA targets and modulate cellular processes such as cell cycle regulation and tissue development in response to extracellular signals. Sam68 has been shown to modulate alternative splicing of the pre-mRNAs of CD44 and Bcl-xL, which are linked to tumor progression and apoptosis. Sam68 and other STAR proteins recognize bipartite RNA sequences and are thought to function as homodimers. However, the structural and functional roles of the self-association are not known. Here, we present the solution structure of the Sam68 Qua1 homodimerization domain. Each monomer consists of two antiparallel α-helices connected by a short loop. The two subunits are arranged perpendicular to each other in an unusual four-helix topology. Mutational analysis of Sam68 in vitro and in a cell-based assay revealed that the Qua1 domain and residues within the dimerization interface are essential for alternative splicing of a CD44 minigene. Together, our results indicate that the Qua1 homodimerization domain is required for regulation of alternative splicing by Sam68.  相似文献   

10.
The RNA-binding protein Sam68 is implicated in various cellular processes including RNA metabolism, apoptosis, and signal transduction. Here we identify a role of Sam68 in TNF-induced NF-κB activation and apoptosis. We found that Sam68 is recruited to the TNF receptor, and its deficiency dramatically reduces RIP recruitment and ubiquitylation. It also impairs cIAP1 recruitment and maintenance of recruited TRAF2 at the TNF receptor. In its absence, activation of the TAK1-IKK kinase complex is defective, greatly reducing signal transduction. Sam68 is also found as a part of the TNF-induced cytoplasmic caspase-8-FADD complex. RIP is not recruited to this complex in Sam68 knockout cells, and caspase activation is virtually absent. These findings delineate previously unknown functions for Sam68 in the TNF signaling pathway, where it acts as a signaling adaptor both in the membrane-associated complex I and in the cytoplasmic complex II, regulating both NF-κB activation and apoptosis.  相似文献   

11.
The protein Sam68 is involved in many cellular processes such as cell-cycle regulation, RNA metabolism, or signal transduction. Sam68 comprises a central RNA-binding domain flanked by unstructured tails containing docking sites for signalling proteins including seven proline-rich sequences (denoted P0 to P6) as potential SH3-domain binding motifs. To comprehensively assess Sam68-SH3-interactions, we applied a phage-display screening of a library containing all approx. 300 human SH3 domains. Thereby we identified five new (from intersectin 2, the osteoclast stimulating factor OSF, nephrocystin, sorting nexin 9, and CIN85) and seven already known high-confidence Sam68-ligands (mainly from the Src-kinase family), as well as several lower-affinity binders. Interaction of the high-affinity Sam68-binders was confirmed in independent assays in vitro (phage-ELISA, GST-pull-down) and in vivo (FACS-based FRET-analysis with CFP- and YFP-tagged proteins). Fine-mapping analyses with peptides established P0, P3, P4, and P5 as exclusive docking-sites for SH3 domains, which showed varying preferences for these motifs. Mutational analyses identified individual residues within the proline-rich motifs being crucial for the interactions. Based on these data, we generated a Sam68-mutant incapable of interacting with SH3 domains any more, as subsequently demonstrated by FRET-analyses. In conclusion, we present a thorough characterization of Sam68's interplay with the SH3 proteome. The observed interaction between Sam68 and OSF complements the known Sam68-Src and OSF-Src interactions. Thus, we propose, that Sam68 functions as a classical scaffold protein in this context, assembling components of an osteoclast-specific signalling pathway.  相似文献   

12.
The breast tumor kinase (BRK) is a growth promoting non-receptor tyrosine kinase overexpressed in the majority of human breast tumors. BRK is known to potentiate the epidermal growth factor (EGF) response in these cells. Although BRK is known to phosphorylate the RNA-binding protein Sam68, the specific tyrosines phosphorylated and the exact role of this phosphorylation remains unknown. Herein, we have generated Sam68 phospho-specific antibodies against C-terminal phosphorylated tyrosine residues within the Sam68 nuclear localization signal. We show that BRK phosphorylates Sam68 on all three tyrosines in the nuclear localization signal. By indirect immunofluorescence we observed that BRK and EGF treatment not only phosphorylates Sam68 but also induces its relocalization. Tyrosine 440 was identified as a principal modulator of Sam68 localization and this site was phosphorylated in response to EGF treatment in human breast tumor cell lines. Moreover, this phosphorylation event was inhibited by BRK small interfering RNA treatment, consistent with Sam68 being a physiological substrate of BRK downstream of the EGF receptor in breast cancer cells. Finally, we observed that Sam68 suppressed BRK-induced cell proliferation, suggesting that Sam68 does indeed contain anti-proliferative properties that may be neutralized in breast cancer cells by phosphorylation.  相似文献   

13.
During mitosis, the activity of the c-Src protein tyrosine kinase increases. The tyrosine phosphorylation of a 68 kDa protein (Sam68) also increases at this time, and recent studies have shown that Src and Sam68 interact. Sam68 is highly related to p62, a RasGAP-associated protein, and has homology to RNA-binding proteins. The relationship between p62 and Sam68, and their roles in Src signalling, need to be clarified, but these findings suggest that Src may participate in regulating RNA processing during the cell cycle.  相似文献   

14.
With the recent characterization of enzymes responsible for protein arginine methylation and demonstration that catabolic products of arginine methylation, such as asymmetric dimethylarginine (ADMA), are among the most powerful mechanisms of atherogenesis, developing endothelial dysfunction and cardiovascular complications in a variety of pathologic processes, the need for functional characterization of the methylation-demethylation processes becomes ever more urgent. Therefore, the aims of the present study were to refine the feedback regulation of protein arginine methylation using one of the heavily methylated proteins, an RNA-binding protein Sam68, as a prototype, to elucidate the relations between Sam68 methylation and tyrosine phosphorylation and the role of methylation in RNA binding and subcellular distribution, as well as the cellular consequences of reduced protein methylation. Screening pro-atherogenic substances known to induce endothelial dysfunction showed that ADMA did not affect the level of arginine methylation of Sam68, whereas peroxynitrite was a strong inhibitor of methylation. Adavanced glycation-modified collagen I, which accumulats in diabetes and induces formation of peroxynitrite and premature endothelial cell senescence, also inhibited arginine methylation of Sam68. When the level of arginine methylation of Sam68 was pharmacologically reduced, this did not affect its RNA binding or degree of tyrosine phosphorylation, but resulted in the predominantly nuclear hypomethylation pattern. Furthermore, protein hypomethylation resulted in the increased rate of apoptosis and premature senescence. This data may offer an additional explanation for the pro-apoptotic and senescence-accelerating action of peroxynitrite, a potent inhibitor of protein methylation.  相似文献   

15.
16.
T-STAR基因定位于染色体8q24.2,其表达产物为分子量约55kDa的Sam68样蛋白,是STAR(signaltransductionandactivatorofRNA)家族新成员,具有RNA结合蛋白特征性的结合位点和酪氨酸磷酸化功能域。可能通过酪氨酸激酶信号转导系统和pre-mRNA的选择性剪接、加工等途径,参与了精子的发生、细胞的增殖调控、转化细胞的永生化过程并可能与某些疾病有关。  相似文献   

17.
Sam68 is a KH-type RNA-binding protein involved in several steps of RNA metabolism with potential implications in cell differentiation and cancer. However, its physiological roles are still poorly understood. Herein, we show that Sam68−/− male mice are infertile and display several defects in spermatogenesis, demonstrating an essential role for Sam68 in male fertility. Sam68−/− mice produce few spermatozoa, which display dramatic motility defects and are unable to fertilize eggs. Expression of a subset of messenger mRNAs (mRNAs) is affected in the testis of knockout mice. Interestingly, Sam68 is associated with polyadenylated mRNAs in the cytoplasm during the meiotic divisions and in round spermatids, when it interacts with the translational machinery. We show that Sam68 is required for polysomal recruitment of specific mRNAs and for accumulation of the corresponding proteins in germ cells and in a heterologous system. These observations demonstrate a novel role for Sam68 in mRNA translation and highlight its essential requirement for the development of a functional male gamete.  相似文献   

18.
19.
A close relationship between Sam68, a tyrosine and proline-rich RNA-binding protein, and Src protein tyrosine kinases (PTK) has already been established, also in T lymphocytes. A constitutive phosphorylation of the molecule has also been documented in various transformed T cells, which probably reflects an increased expression of PTK of the Src family. Using the hybridoma T cell line, T8.1, or Jurkat T cells, we investigated the respective contribution of the two Src kinases Fyn and Lck, expressed in T cells, in this phenomenon. By overexpressing the two proteins, we show that the constitutive phosphorylation of Sam68 in vivo directly correlates with cellular Fyn levels, but not with Lck expression, despite the capacity of the PTK to strongly phosphorylate the molecule in vitro. Overexpressed Fyn is mainly localized at the cell membrane. We find that Sam68 phosphorylation, including in the nuclear fraction in which the molecule is predominantly expressed, is lost with a delocalized Fyn mutant deleted of its N-terminal membrane-anchoring domain. Finally, we demonstrate, using a construct encoding a Sam68 molecule without its nuclear localization signal, that nuclear expression of Sam68 is not required for phosphorylation. We conclude that the constitutive phosphorylation of Sam68 in T cells is a Fyn-dependent process occurring in a cell-membrane compartment from which phospho-Sam68 molecules can thereafter accumulate into the nucleus.  相似文献   

20.
Sam68 is a multimeric 68-kDa RNA-binding nuclear protein of unknown function that interacts with, and is tyrosine-phosphorylated by, the oncogenic protein Src during mitosis. Random homozygous knock-out (RHKO) is a retroviral-based antisense RNA strategy that can identify chromosomal genes whose functional disablement leads to reversible tumorigenic capabilities. Here we report that RHKO-induced Sam68 deficiency results in neoplastic transformation of murine NIH3T3 fibroblasts. Whereas simple haploinsufficiency of Sam68 produced by insertion mutagenesis in a single chromosomal allele did not detectably affect cell growth, reduction of Sam68 protein to <25% of the wild type level was associated with anchorage-independent growth, defective contact inhibition, and the ability to form metastatic tumors in nude mice. These properties were reversed by cessation of RHKO inactivation. Our findings, which indicate that the Sam68 protein level can prominently affect cell proliferation, implicate Sam68 function in tumorigenesis. Consistent with these results is evidence that cells undergoing mitosis show a dramatic reduction in the level of Sam68 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号