首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequency of recombination exchanges per unit length of DNA (Freuld) can be estimated by measuring the scale of the genetic map that is the mean statistical distance between two neighboring crossovers. The scales appear to be equal for the alternative pathways of recombination, RecBCD (wild-type cells) or RecF (recBC- sbcB- sbcC- genotypes). The absolute value of the scale depends on specific experimental conditions. recR, recQ, ruv, recJ and recN genes of the RecF pathway of recombination (recBC- sbcBC- cell genotypes) do not appear to be silent in wild-type cells where the RecBCD pathway predominates. On the contrary, these genes are responsible for the Freuld. The list recF504::Kmr greater than recQ61::Tn3 greater than ruv-54 greater than recJ284::Tn10 shows decreasing efficiency in inhibiting recombination exchanges by these mutations. The recN264 mutation gives a small, but opposite effect of increasing the frequency of recombination exchanges. The effect of the recF and recQ mutations appears to be additive, but that is not the case in combinations of ruv-54 with recF504::Kmr or recQ61::Tn3.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
The RecE pathway of genetic recombination in Escherichia coli K-12 was defined to be the pathway that is utilized in deoxyribonucleic acid exonuclease V (ExoV)-defective cells which express constitutively recE+, the structural gene for deoxyribonucleic acid exonuclease VIII. Dependence on ExoVIII was shown by the occurrence in a recB21 sbcA23 strain of recombination deficiency mutations in recE, the structural gene for ExoVIII. Point mutations in recE were found as well as deletion mutations in which the entire Rac prophage, carrying recE, was lost. In addition, strain construction and mutagenesis revealed the dependence of the RecE pathway on recA+ and on recF+. Dependence on a fourth gene was shown by a mutation (rec-77) which does not map near the other genes. The problem of distinguishing the RecE pathway from that previously called RecF is discussed.  相似文献   

10.
Summary There exist many regions on the genetic map of E. coli, remarkable for very high frequency of genetic exchanges between the donor and recipient chromosome after conjugation. We call these regions fre (frequent recombination exchange). Two of them were localized: frel near to the gene tsx and fre2 adjacent to metB. The conjugational transfer of fre is characterized by high negative interference in the corresponding region of the map.The effect called Fre is genetically determined. It is slightly present on the Rec BC pathway of recombination and becomes drastic on the Rec F pathway. The effect is sharpened by an increase of temperature till 43° C during and after conjugation. The effect is absolutely dependent on the genes recA and recF.It is assumed that region fre contains many hot spots of recombination, i.e. sites of initiation, where a recF-dependent endonuclease starts the process. The scale of the genetic map of E. coli K-12 in the areas not including the fre regions is about 24 min both on the Rec BC and the Rec F pathways. In the regions including fre, the saale drops to 5 min on the Rec BC pathway and to about 1 min on the Rec F pathway. These strong variations explain the discrepancies in the mapping distances found in different works.If a plasmid F' containing the fre region is transmitted during conjugation it becomes extremely unstable. A fragment of DNA containing the fre region is always lost from the plasmid. It leads to its shortening or sometimes to the killing of the cell. The Fre effect is seen also in P1 transduction. These facts pose many questions. Suggestive answers are discussed.  相似文献   

11.
12.
13.
Genetic recombination between a nontandem duplication of two partially deleted lactose operons (lacMS286phi80dIIlacBK1) in Escherichia coli K-12 has been examined. Since the deletions were nonoverlapping, rare lactose-fermenting (Lac+) recombinants occurred and were detected qualitatively on lactose tetrazolium agar indicator plates as white papillae growing on the surface of red colonies or quantitively on lactose minimal agar plates. Formation of Lac+ recombinants required the recA, recB, and recC gene products. Indirect suppression of recB21 by sbcB15 led to an increase in the frequency of Lac+ recombinants over wild-type levels. recF143 did not appreciably alter the number of Lac+ progeny, whereas recL152 and sbcB15 strains yielded increased numbers of Lac+ recombinants. The nature and formation of Lac+ recombinants was also examined. Respreading analysis indicated that formation of recombinants occurred primarily as the cells entered early stationary phase on the surface of the minimal agar plates and that over 90% of the recombinants contained a phi80dIIlac+ prophage. Time-of-entry experiments suggested that the region of deoxyribonucleic acid between the two operons was not inverted as a result of the recombinational event.  相似文献   

14.
Genetically related Escherichia coli K-12 strains were found to differ widely in their l-glutamic acid decarboxylase (GAD) activity. This variation is due to differences in the amount of GAD produced by the different cultures, rather than to the appearance of altered enzymes differing in catalytic activity. A regulatory gene, gadR, which controls the amount of GAD was mapped on the E. coli K-12 chromosome. A strain with a lesion in the structural gene for GAD is described.  相似文献   

15.
Interplasmidic and intraplasmidic recombination proficiencies were determined in E. coli bacterial strains carrying rec mutations. Our results defined the role of recF gene function, recB, recC, and sbcB gene products (exonuclease V and exonuclease I) in plasmidic recombination in wild-type E. coli cells and in cells in which the recE recombination pathway is activated. RecF gene function is required for interplasmidic recombination regardless of the recB recC genotype. Intraplasmidic recombination is recF dependent in cells having a functional exonuclease V, but not in recB recC mutants. Exonuclease V activity inhibits both interplasmidic and intraplasmidic recombination via the recE pathway.  相似文献   

16.
An analysis of restriction fragment length polymorphism (RFLP) using eight residential insertion sequence (IS) elements as hybridization probes reveals that the genome of resting bacteria is more dynamic than it was long believed. Escherichia coli strains stored in agar stabs for up to 30 yr accumulate a genetic variation which is correlated to time of storage. This spontaneous mutagenesis is often IS-specific, with particularly high activity for IS5, and thus suggests that transpositional DNA rearrangements are a major cause for the observed genetic polymorphism. The RFLP patterns indicate a burst of IS30 transposition to occur occasionally. Mutation rate is estimated by two different methods to roughly 10(-5) IS-related DNA rearrangements per bacterial chromosome per hour of storage for the eight IS elements studied. A pedigree derived from the RFLP data reveals that populations had evolved independently in each stab and showed no signs of convergence. Relics of an assumed ancestral population were still present in the stab cultures, but the elder stabs provided mostly mutants. These results indicate that cells placed under nutritional deprivation might have a highly plastic genome and suggest that such plasticity might play an adaptive role.   相似文献   

17.
Heterozygous lacZ- merodiploids of Escherichia coli K-12 have been used to study the role of the RecBC enzyme in general recombination. The transcribable intermediate assay detects the product of early steps in recombination without requiring the formation of viable recombinant colonies. Recombination is initiated by infection with lambda precA+. We have found that transcribable intermediate formation in crosses between F42 lac and chromosomal lac is dependent on F fertility functions and an active RecBC enzyme. Thus, the products of the recB and recC genes are required in early steps of recombination between these two substrates. Introduction of the F42 lac donor DNA by conjugation immediately after infection with lambda precA+ abolishes the requirement for an active RecBC enzyme.  相似文献   

18.
Summary When Escherichia coli K12() lysogens are infected with heteroimmune phage, which are unable to replicate, general recombination between phage and prophage depends on the bacterial recF gene. It has been shown that in E. coli K12 postconjugational recombination, the RecF pathway only works with full efficiency if exonuclease I is absent (Clark 1973). However, results presented in this paper indicate that under conditions in which replication is blocked, the recombination pathway dependant on the recF gene is fully active in producing viral recombinants even, if the phage is Red+, in the presence of exonuclease I. In contrast, removal of exonuclease and protein requires elimination of exonuclease I for an efficient RecF pathway. It is concluded that the Red system cooperates with the RecF pathway and that this cooperation involves overcoming the inhibitory effects of exonuclease I. In the absence of exonuclease, protein stimulates recF-dependent recombination but does not suffice to prevent the negative effect of exonuclease I. In the presence of protein, full efficiency of the RecF pathway can be obtained either via cooperation with exonuclease I or, if the viral exonuclease is defective, via inactivation of exonuclease I. Since activity of exonuclease appears necessary to overcome the inhibitory effects of exonuclease I, it is proposed here that exonuclease diverts material from the RecF pathway in a shunt reaction which allows completion of recF-initiated recombinational intermediates via a mechanism insensitive to exonuclease I.When replication is allowed, the Rec system produces viral recombinants mainly via a recF-independent mechanism. However, a major contribution of the RecF pathway to recombination is observed after removal of the Red system and exonuclease I.Obra social de la Caja de Ahorros de Valencia (Director: S. Grisolía)  相似文献   

19.
20.
miaA mutants, which contain A-37 instead of the ms(2)i(6)A-37 hypermodification in their tRNA, show a moderate mutator phenotype leading to increased GC-->TA transversion. We show that the miaA mutator phenotype is dependent on recombination functions similar to, but not exactly the same as, those required for translation stress-induced mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号