首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
A major aim of present-day proteomics is to study changes in protein expression levels at a global level, ideally monitoring all proteins present in cells or tissue. Mass spectrometry is a well-respected technology in proteomics that is widely used for the identification of proteins. More recently, methodologies have been introduced showing that mass spectrometry can also be used for protein quantification. This article reviews various mass spectrometry-based technologies in quantitative proteomics, highlighting several interesting applications in areas ranging from cell biology to clinical applications.  相似文献   

2.
A major aim of present-day proteomics is to study changes in protein expression levels at a global level, ideally monitoring all proteins present in cells or tissue. Mass spectrometry is a well-respected technology in proteomics that is widely used for the identification of proteins. More recently, methodologies have been introduced showing that mass spectrometry can also be used for protein quantification. This article reviews various mass spectrometry-based technologies in quantitative proteomics, highlighting several interesting applications in areas ranging from cell biology to clinical applications.  相似文献   

3.
Mass spectrometry (MS)-based proteomics has significantly contributed to the development of systems biology, a new paradigm for the life sciences in which biological processes are addressed in terms of dynamic networks of interacting molecules. Because of its advanced analytical capabilities, MS-based proteomics has been used extensively to identify the components of biological systems, and it is the method of choice to consistently quantify the effects of network perturbation in time and space. Herein, we review recent contributions of MS to systems biology and discuss several examples that illustrate the importance of mass spectrometry to elucidate the components and interactions of molecular networks.  相似文献   

4.
The field of proteomics is built on technologies to analyze large numbers of proteins--ideally the entire proteome--in the same experiment. Mass spectrometry (MS) has been successfully used to characterize proteins in complex mixtures, but results so far have largely been qualitative. Two recently developed methodologies offer the opportunity to obtain quantitative proteomic information. Comparing the signals from the same peptide under different conditions yields a rough estimate of relative protein abundance between two proteomes. Alternatively, and more accurately, peptides are labeled with stable isotopes, introducing a predictable mass difference between peptides from two experimental conditions. Stable isotope labels can be incorporated 'post-harvest', by chemical approaches or in live cells through metabolic incorporation. This isotopic handle facilitates direct quantification from the mass spectra. Using these quantitative approaches, precise functional information as well as temporal changes in the proteome can be captured by MS.  相似文献   

5.
6.
7.
8.
ten Have S  Boulon S  Ahmad Y  Lamond AI 《Proteomics》2011,11(6):1153-1159
Immuno-precipitation (IP) experiments using MS provide a sensitive and accurate way of characterising protein complexes and their response to regulatory mechanisms. Differences in stoichiometry can be determined as well as the reliable identification of specific binding partners. The quality control of IP and protein interaction studies has its basis in the biology that is being observed. Is that unusual protein identification a genuine novelty, or an experimental irregularity? Antibodies and the solid matrices used in these techniques isolate not only the target protein and its specific interaction partners but also many non-specific 'contaminants' requiring a structured analysis strategy. These methodological developments and the speed and accuracy of MS machines, which has been increasing consistently in the last 5 years, have expanded the number of proteins identified and complexity of analysis. The European Science Foundation's Frontiers in Functional Genomics programme 'Quality Control in Proteomics' Workshop provided a forum for disseminating knowledge and experience on this subject. Our aim in this technical brief is to outline clearly, for the scientists wanting to carry out this kind of experiment, and recommend what, in our experience, are the best potential ways to design an IP experiment, to help identify possible pitfalls, discuss important controls and outline how to manage and analyse the large amount of data generated. Detailed experimental methodologies have been referenced but not described in the form of protocols.  相似文献   

9.
10.
van den Berg BH  Tholey A 《Proteomics》2012,12(4-5):516-529
Protease-catalyzed hydrolysis of peptide bonds is one of the most pivotal post-translational modifications fulfilling manifold functions in the regulation of cellular processes. Therefore, dysregulation of proteolytic reactions plays a central role in many pathophysiological events. For this reason, understanding the molecular mechanisms in proteolytic reactions, in particular the knowledge of proteases involved in complex processes, expression levels and activity of protease and knowledge of the targeted substrates are an indispensable prerequisite for targeted drug development. The present review focuses on mass spectrometry-based proteomic methods for the analysis of protease cleavage sites, including the identification of the hydrolyzed bonds as well as of the surrounding sequence. Peptide- and protein-centric approaches and bioinformatic tools for experimental data interpretation will be presented and the major advantages and drawbacks of the different approaches will be addressed. The recent applications of these approaches for the analysis of biological function of different protease classes and potential future directions will be discussed.  相似文献   

11.
Boja ES  Rodriguez H 《Proteomics》2012,12(8):1093-1110
Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM-MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM-MS-based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents.  相似文献   

12.
Timely classification and identification of bacteria is of vital importance in many areas of public health. We present a mass spectrometry (MS)-based proteomics approach for bacterial classification. In this method, a bacterial proteome database is derived from all potential protein coding open reading frames (ORFs) found in 170 fully sequenced bacterial genomes. Amino acid sequences of tryptic peptides obtained by LC-ESI MS/MS analysis of the digest of bacterial cell extracts are assigned to individual bacterial proteomes in the database. Phylogenetic profiles of these peptides are used to create a matrix of sequence-to-bacterium assignments. These matrixes, viewed as specific assignment bitmaps, are analyzed using statistical tools to reveal the relatedness between a test bacterial sample and the microorganism database. It is shown that, if a sufficient amount of sequence information is obtained from the MS/MS experiments, a bacterial sample can be classified to a strain level by using this proteomics method, leading to its positive identification.  相似文献   

13.
Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease.  相似文献   

14.
The scientific community has shown great interest in the field of mass spectrometry-based proteomics and peptidomics for its applications in biology.Proteomics technologies have evolved to produce larg...  相似文献   

15.
Mass spectrometry-based plasma proteomics is a field where intense research has been performed during the last decade. Being closely linked to biomarker discovery, the field has received a fair amount of criticism, mostly due to the low number of novel biomarkers reaching the clinic. However, plasma proteomics is under gradual development with improvements on fractionation methods, mass spectrometry instrumentation and analytical approaches. These recent developments have contributed to the revival of plasma proteomics. The goal of this review is to summarize these advances, focusing in particular on fractionation methods, both for targeted and global mass spectrometry-based plasma analysis.  相似文献   

16.
17.
18.
The study of protein-protein interactions by mass spectrometry is an increasingly important part of post-genomics strategies to understand protein function. A variety of mass spectrometry-based approaches allow characterization of cellular protein assemblies under near-physiological conditions and subsequent assignment of individual proteins to specific molecular machines, pathways and networks, according to an increasing level of organizational complexity. An appropriate analytical strategy can be individually tailored--from an in-depth analysis of single complexes to a large-scale characterization of entire molecular pathways or even an analysis of the molecular organization of entire expressed proteomes. Here we review different options regarding protein-complex purification strategies, mass spectrometry analysis and bioinformatic methods according to the specific question that is being addressed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号