首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several investigators have revealed that a relationship exists between articular cartilage deterioration and the mechanical stress that results from transient impulsive forces created in the lower extremity during gait. This study is an investigation of the transmission of impulse waves through the lower extremity and the effect of knee pathology and prosthetic knee replacement on their transmission.

An in vitro experiment is performed using human cadaver specimens that are instrumented with accelerometers. The distal end of the tibia is impacted with a vibration shaker to simulate heel strike. The results indicate that the normal knee joint is able to attenuate 59% of the transient peak force applied to it by the tibia. This attenuation capacity is reduced by knee pathology and decreases further with implantation of a knee prosthesis. The results indicate that abnormalities at the knee may increase the risk of degenerative changes at the ankle, hip and in the spine due to increased transient impulsive forces.  相似文献   


2.
Previous research has proposed that a lack of variability in lower extremity coupling during running is associated with pathology. The purpose of the study was to evaluate lower extremity coupling variability in runners with and without a history of iliotibial band syndrome (ITBS) during an exhaustive run. Sixteen runners ran to voluntary exhaustion on a motorized treadmill while a motion capture system recorded reflective marker locations. Eight runners had a history of ITBS. At the start and end of the run, continuous relative phase (CRP) angles and CRP variability between strides were calculated for key lower extremity kinematic couplings. The ITBS runners demonstrated less CRP variability than controls in several couplings between segments that have been associated with knee pain and ITBS symptoms, including tibia rotation-rearfoot motion and rearfoot motion-thigh ad/abduction, but more variability in knee flexion/extension-foot ad/abduction. The ITBS runners also demonstrated low variability at heel strike in coupling between rearfoot motion-tibia rotation. The results suggest that runners prone to ITBS use abnormal segmental coordination patterns, particular in couplings involving thigh ad/abduction and tibia internal/external rotation. Implications for variability in injury etiology are suggested.  相似文献   

3.
Knee injuries, especially those that affect the cruciate and lateral ligaments, are one of the most serious and frequent pathologies that affect the lower human extremity. Hence, the aim of this study is to develop a dynamic model for the lower extremity capable of estimating forces, forces in the cruciate and collateral ligaments and those normal to the articular cartilage, generated in the knee. The proposed model considers a four-bar mechanism in the knee, a spherical joint in the pelvis and a revolute one in the ankle. The four-bar mechanism is obtained by a synthesis process. The dynamic model includes the inertial properties of the femur, tibia, patella and the foot, the ground reaction force and the most important muscles in the knee. Muscle forces are estimated using an optimisation technique. Results from the application of the model on a real human task are presented.  相似文献   

4.
The purpose of this study was to predict and explain the pattern of shear force and ligament loading in the ACL-deficient knee during walking, and to compare these results to similar calculations for the healthy knee. Musculoskeletal modeling and computer simulation were combined to calculate ligament forces in the ACL-deficient knee during walking. Joint angles, ground-reaction forces, and the corresponding lower-extremity muscle forces obtained from a whole-body dynamic optimization simulation of walking were input into a second three-dimensional model of the lower extremity that represented the knee as a six degree-of-freedom spatial joint. Anterior tibial translation (ATT) increased throughout the stance phase of gait when the model ACL was removed. The medial collateral ligament (MCL) was the primary restraint to ATT in the ACL-deficient knee. Peak force in the MCL was three times greater in the ACL-deficient knee than in the ACL-intact knee; however, peak force sustained by the MCL in the ACL-deficient knee was limited by the magnitude of the total anterior shear force applied to the tibia. A decrease in anterior tibial shear force was brought about by a decrease in the patellar tendon angle resulting from the increase in ATT. These results suggest that while the MCL acts as the primary restraint to ATT in the ACL-deficient knee, changes in patellar tendon angle reduce total anterior shear force at the knee.  相似文献   

5.
Observation of complex whole body movements suggests that the nervous system coordinates multiple operational subsystems using some type of hierarchical control. When comparing two forward translating tasks performed with and without backward angular impulse, we have learned that both trunk-leg coordination and reaction force-time characteristics are significantly different between tasks. This led us to hypothesize that differences in trunk-leg coordination and reaction force generation would induce between-task differences in the control of the lower extremity joints during impulse generation phase of the tasks. Eight highly skilled performers executed a series of forward jumps with and without backward rotation (reverse somersault and reverse timer, respectively). Sagittal plane kinematics, reaction forces, and electromyograms of lower extremity muscles were acquired during the take-off phase of both tasks. Lower extremity joint kinetics were calculated using inverse dynamics. The results demonstrated between-task differences in the relative angles between the lower extremity segments and the net joint forces/reaction force and the joint angular velocity profiles. Significantly less knee extensor net joint moments and net joint moment work and greater hip extensor net joint moments and net joint moment work were observed during the push interval of the reverse somersault as compared to the reverse timer. Between-task differences in lower extremity joint kinetics were regulated by selectively activating the bi-articular muscles crossing the knee and hip. These results indicate that between-task differences in the control of the center of mass relative to the reaction force alters control and dynamics of the multijoint lower extremity subsystem.  相似文献   

6.
In the commonly used SIMM software, which includes a complete musculoskeletal model of the lower limbs, the reaction forces at the knee are computed. These reaction forces represent the bone-on-bone contact forces and the soft tissue forces (e.g. ligaments) other than muscles acting at the joint. In the knee model integrated into this software, a patellotibial joint rather than a patellofemoral joint is defined, and a force acting along the direction of the patellar ligament is not included. Although this knee model results in valid kinematics and muscle moment arms, the reaction forces at the knee calculated do not represent physiologic knee joint reaction forces. Hence our objectives were to develop a method of calculating physiologic knee joint reaction forces using the knee model incorporated into the SIMM software and to demonstrate the differences in the forces returned by SIMM and the physiologic forces in an example. Our method converts the anatomically fictional patellotibial joint into a patellofemoral joint and computes the force in an inextensible patellar ligament. In our example, the rectus femoris was fully excited isometrically, with the knee and hip flexed to 90 degrees . The resulting SIMM tibiofemoral joint reaction force was primarily shear, because the quadriceps force was applied to the tibia via the fictional patellotibial joint. In contrast the physiologic tibiofemoral joint reaction force was primarily compression, because the quadriceps force was applied through the patellar ligament. This result illustrates that the physiologic knee joint reaction forces are profoundly different than the forces returned by SIMM. However physiologic knee joint reaction forces can be computed with postprocessing of SIMM results.  相似文献   

7.
In this paper we introduce the concept of the functional (or equivalent) geometry of the knee, which is an attempt to reduce the natural knee with its complex geometry, frictional resistance and deformable cartilage into a two-dimensional joint comprising rigid femur and tibia in frictionless contact. An apparatus and method are described to measure the slope of the tangent to the surfaces of the 'equivalent' bones at their 'point' of contact. An antero posterior force of +/-300-500 N and axial compressive load of twice body weight were applied on cadaveric knee joints. The corresponding displacement of the tibia in the saggital plane was measured firstly with both cruciates intact and then when each was severed in turn. From the data obtained both the slope of the tangent mentioned above and the tensions developed along the cruciates under the influence of the forces applied were calculated. The results showed that the functional geometry of the knee in the saggital plane can be represented by a convex femur and a concave tibia. The tensions along the cruciates calculated on the basis of the experimental measurements were nearly always lower than the antero posterior force applied, and although this corroborated the trend demonstrated in a previous theoretical analysis, they were lower still. The reason for this may be the deformation of the cartilage under load, thus modifying the geometry of contact resulting in a more concave tibia of the 'equivalent' knee joint, than that of the rigid model used in the theoretical analysis.  相似文献   

8.
The hamstring muscles have the potential to counteract anterior shear forces at the knee joint by co-contracting during knee extension efforts. Such a muscle recruitment pattern might protect the anterior cruciate ligament (ACL) by reducing its strain. In this study we investigated to what extent co-activation of the knee flexors during extension efforts is compatible with the hypothesis that this co-activation serves to counteract anterior tibial shear forces during isometric knee extension efforts in healthy subjects. To this aim, it is investigated whether co-activation varies with the required knee extension moment, with the knee joint angle, and with the position of the external flexing force relative to the knee joint. With unaltered moment and muscle activation, distal positioning of the flexing force on the tibia causes higher resultant (muscular plus external) forward shear forces at the knee as compared to proximal positioning. In ten subjects, knee flexor and extensor EMG was measured during a quasi-isometric positioning task for a range (5-50 degrees) of knee flexion angles. It was found that the co-activation of the knee flexors increased with the extension moment, but this increase was less than proportional (p<0.001). The extension moment increased 2.7 to 3.4 times, whereas the activation of Biceps Femoris and Semitendinosus increased only a factor 1.3 to 2.0 (joint angle dependent). Furthermore, a strong increase in co-activation was seen near full extension of the knee joint. The position of the external extension load on the tibia did not affect the level of co-contraction. It is argued that these results do not suggest a recruitment pattern that is directed at reduction of anterior shear forces in the knee joint during sub-maximal isometric knee extension efforts in healthy subjects.  相似文献   

9.
Bone loss from the paralysed limbs after spinal cord injury (SCI) is well documented. Under physiological conditions, bones are adapted to forces which mainly emerge from muscle pull. After spinal cord injury (SCI), muscles can no longer contract voluntarily and are merely activated during spasms. Based on the Ashworth scale, previous research has suggested that these spasms may mitigate bone losses. We therefore wished to assess muscle forces after SCI with a more direct measure and compare it to measures of bone strength. We hypothesized that the bones in SCI patients would be in relation to the loss of muscle forces. Six male patients with SCI 6.4 (SD 4.3) years earlier and 6 age-matched, able-bodied control subjects were investigated. Bone scans from the right knee were obtained by pQCT. The knee extensor muscles were electrically stimulated via the femoral nerve, isometric knee extension torque was measured and patellar tendon force was estimated. Tendon force upon electrical stimulation in the SCI group was 75% lower than in the control subjects (p<0.01). Volumetric bone mineral density of the patella and of the proximal tibia epiphysis were 50% lower in the SCI group than in the control subjects (p<0.01). Cortical area was lower by 43% in the SCI patients at the proximal tibia metaphysis, and by 33% at the distal femur metaphysis. No group differences were found in volumetric cortical density. Close curvilinear relationships were found between stress and volumetric density for the tibia epiphysis (r(2)=0.90) and for the patella (r(2)=0.91). A weaker correlation with the tendon force was found for the cortical area of the proximal tibia metaphysis (r(2)=0.63), and none for the distal femur metaphysis. These data suggest that, under steady state conditions after SCI, epiphyseal bones are well adapted to the muscular forces. For the metaphysis of the long bones, such an adaptation appears to be less evident. The reason for this remains unclear.  相似文献   

10.
As one of the most complex and vulnerable structures of body, the human knee joint should maintain dynamic equilibrium and stability in occupational and recreational activities. The evaluation of its stability and factors affecting it is vital in performance evaluation/enhancement, injury prevention and treatment managements. Knee stability often manifests itself by pain, hypermobility and giving-way sensations and is usually assessed by the passive joint laxity tests. Mechanical stability of both the human knee joint and the lower extremity at early stance periods of gait (0% and 5%) were quantified here for the first time using a hybrid musculoskeletal model of the lower extremity. The roles of muscle coactivity, simulated by setting minimum muscle activation at 0–10% levels and ACL deficiency, simulated by reducing ACL resistance by up to 85%, on the stability margin as well as joint biomechanics (contact/muscle/ligament forces) were investigated. Dynamic stability was analyzed using both linear buckling and perturbation approaches at the final deformed configurations in gait. The knee joint was much more stable at 0% stance than at 5% due to smaller ground reaction and contact forces. Muscle coactivity, when at lower intensities (<3% of its maximum active force), increased dynamic stability margin. Greater minimum activation levels, however, acted as an ineffective strategy to enhance stability. Coactivation also substantially increased muscle forces, joint loads and ACL force and hence the risk of further injury and degeneration. A deficiency in ACL decreases total ACL force (by 31% at 85% reduced stiffness) and the stability margin of the knee joint at the heel strike. It also markedly diminishes forces in lateral hamstrings (by up to 39%) and contact forces on the lateral plateau (by up to 17%). Current work emphasizes the need for quantification of the lower extremity stability margin in gait.  相似文献   

11.
Musculoskeletal models are currently the primary means for estimating in vivo muscle and contact forces in the knee during gait. These models typically couple a dynamic skeletal model with individual muscle models but rarely include articular contact models due to their high computational cost. This study evaluates a novel method for predicting muscle and contact forces simultaneously in the knee during gait. The method utilizes a 12 degree-of-freedom knee model (femur, tibia, and patella) combining muscle, articular contact, and dynamic skeletal models. Eight static optimization problems were formulated using two cost functions (one based on muscle activations and one based on contact forces) and four constraints sets (each composed of different combinations of inverse dynamic loads). The estimated muscle and contact forces were evaluated using in vivo tibial contact force data collected from a patient with a force-measuring knee implant. When the eight optimization problems were solved with added constraints to match the in vivo contact force measurements, root-mean-square errors in predicted contact forces were less than 10 N. Furthermore, muscle and patellar contact forces predicted by the two cost functions became more similar as more inverse dynamic loads were used as constraints. When the contact force constraints were removed, estimated medial contact forces were similar and lateral contact forces lower in magnitude compared to measured contact forces, with estimated muscle forces being sensitive and estimated patellar contact forces relatively insensitive to the choice of cost function and constraint set. These results suggest that optimization problem formulation coupled with knee model complexity can significantly affect predicted muscle and contact forces in the knee during gait. Further research using a complete lower limb model is needed to assess the importance of this finding to the muscle and contact force estimation process.  相似文献   

12.
The effect of external forces on axial arterial wall mechanics has conventionally been regarded as secondary to hemodynamic influences. However, arteries are similar to muscles in terms of the manner in which they traverse joints, and their three-dimensional geometrical requirements for joint motion. This study considers axial arterial shortening and elongation due to motion of the lower extremity during gait, ascending stairs, and sitting-to-standing motion. Arterial length change was simulated by means of a graphics based anatomic and kinematic model of the lower extremity. This model estimated the axial shortening to be as much as 23% for the femoropopliteal arterial region and as much as 21% for the iliac artery. A strong correlation was observed between femoropopliteal artery shortening and maximum knee flexion angle (r2=0.8) as well as iliac artery shortening and maximum hip angle flexion (r2=0.9). This implies a significant mechanical influence of locomotion on arterial behavior in addition to hemodynamics factors. Vascular tissue has high demands for axial compliance that should be considered in the pathology of atherosclerosis and the design of vascular implants.  相似文献   

13.
The relationships between extrinsic forces acting at the knee and knee kinematics were examined with the purpose of identifying specific phases of the walking cycle that could cause abnormal kinematics in the anterior cruciate ligament (ACL) deficient knee. Intersegmental forces and moments in directions that would produce anterior-posterior (AP) translation, internal-external (IE) rotation and flexion-extension (FE) at the knee were compared with the respective translation and rotations of the tibia relative to the femur during four selected phases (heel strike, weight acceptance, terminal extension and swing) of the walking cycle. The kinematic changes associated with loss of the ACL occurred primarily during the terminal portion of swing phase of the walking cycle where, for the ACL deficient knee, the tibia had reduced external rotation and anterior translation as the knee extended prior to heel strike. The kinematic changes during swing phase were associated with a rotational offset relative to the contralateral knee in the average position of the tibia towards internal rotation. The offset was maintained through the entire gait cycle. The abnormal offsets in the rotational position were correlated with the magnitude of the flexion moment (balanced by a net quadriceps moment) during weight acceptance. These results suggest that adaptations to the patterns of muscle firing during walking can compensate for kinematic changes associated with the loss of the ACL. The altered rotational position would cause changes in tibiofemoral contact during walking that could cause the type of degenerative changes reported in the meniscus and the articular cartilage following ACL injury.  相似文献   

14.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

15.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

16.
Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle–tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model.  相似文献   

17.
As a first step towards reproducing desired three-dimensional joint loading and motion on a dynamic knee simulator, the goal of this study was to develop and verify a three-dimensional computational model that generated control profiles for the simulator using desired knee loading and motion as model inputs. The developed model was verified by predicting tibio-femoral loading on an instrumented analog knee for given actuator forces and the ability to generate simulator control profiles was demonstrated using a three-dimensional walking profile. The model predicted axial tibia loading for a sagittal-plane dual-limb squat within 1% of measured peak loading. Adding out-of-sagittal-plane forces decreased the accuracy of load prediction. The model generated control profiles to the simulator that produced axial tibia loading within 16% of desired for walking. Discrepancies in predicted and measured quadriceps forces influenced the accuracy of the generated control profiles. Future work will replace the analog knee in both the model and machine with a prosthetic knee.  相似文献   

18.
A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174 N, 1962 N) and in early stance phase (510 N, 525 N), while gait saw peak forces in the hamstrings (851 N, 868 N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in an FE framework.  相似文献   

19.
The purpose of the present study was to determine the effects of orthoses designed to support the forefoot and rearfoot on the kinematics and kinetics of the lower extremity joints during walking. Fifteen participants volunteered for this study. Kinematic and kinetic variables during overground walking were compared with the participants wearing sandals without orthoses or sandals with orthoses. Orthoses increased knee internal abduction moment during late stance and knee abduction angular impulse, and reduced the medial ground reaction force during late stance, adduction free moment, forefoot eversion angle, ankle inversion moment and angular impulse, hip adduction angle, hip abduction moment, and hip external rotation moment and angular impulse (p<0.05). Orthoses decreased the torsional forces on the lower extremity and reduced the loading at the hip during walking. These findings combined with our previous studies and those of others suggest that forefoot abnormalities are critically important in influencing lower extremity kinematics and kinetics, and may underlie some non-traumatic lower extremity injuries.  相似文献   

20.
Pattern of anterior cruciate ligament force in normal walking   总被引:6,自引:0,他引:6  
The goal of this study was to calculate and explain the pattern of anterior cruciate ligament (ACL) loading during normal level walking. Knee-ligament forces were obtained by a two-step procedure. First, a three-dimensional (3D) model of the whole body was used together with dynamic optimization theory to calculate body-segmental motions, ground reaction forces, and leg-muscle forces for one cycle of gait. Joint angles, ground reaction forces, and muscle forces obtained from the gait simulation were then input into a musculoskeletal model of the lower limb that incorporated a 3D model of the knee. The relative positions of the femur, tibia, and patella and the forces induced in the knee ligaments were found by solving a static equilibrium problem at each instant during the simulated gait cycle. The model simulation predicted that the ACL bears load throughout stance. Peak force in the ACL (303 N) occurred at the beginning of single-leg stance (i.e., contralateral toe off). The pattern of ACL force was explained by the shear forces acting at the knee. The balance of muscle forces, ground reaction forces, and joint contact forces applied to the leg determined the magnitude and direction of the total shear force acting at the knee. The ACL was loaded whenever the total shear force pointed anteriorly. In early stance, the anterior shear force from the patellar tendon dominated the total shear force applied to the leg, and so maximum force was transmitted to the ACL at this time. ACL force was small in late stance because the anterior shear forces supplied by the patellar tendon, gastrocnemius, and tibiofemoral contact were nearly balanced by the posterior component of the ground reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号