首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A trial was conducted on Montana native rangeland to examine the effects of cow age and ambient air temperatures on mid-winter grazing activity of pregnant beef cows. Cows were fitted with vibracorders and pedometers for 50 continuous days in January and February to monitor daily grazing time (DGT) and distance traveled. Three-year-old cows grazed 0.7 h day−1 longer (P<0.005) and traveled 0.85 km day−1 further (P<0.05) than 5-and 7-year-old cows. Total DGT averaged 8.8 h day−1 across ages and was insensitive (P>0.05) to mean ambient temperature departures (either increases or decreases) from average temperatures of the previous 1–20 days. DGT did not remain below 8 h day−1 for more than one successive day. However, examination of grazing times within daily periods indicated significant linear respones to temperature changes. Morning (07.01–13.00 h) grazing times exhibited variable responses (P<0.05) to temperature departures from averages across the previous 17, 19 and 20 days. Grazing times during afternoons (13.01–19.00 h) and evenings (19.01–07.00 h) declined (P<0.05) when temperatures either increased or decreased from averages of the previous 6–10, and 1, 2 and 4 days, respectively. Only 17% of DGT occurred during the evening period. We concluded that in the foothill grasslands of the Northern Rockies, range beef cows maintained consistent total grazing time despite fluctuating mid-winter temperatures (8 to −26°C) and that cow age influenced grazing activity.  相似文献   

2.
Differences in grazing behavior among Hereford (HH), 50% Angus-50% Hereford (AH), 50% Simmental-50% Hereford (1S1H) and 75% Simmental-25% Hereford (3S1H) lactating cows grazing foothill range were measured using vibracorders and pedometers to estimate daily grazing hours and distance traveled, respectively. There were four 10-day grazing periods during July and August. Cow weight, calf weight and milk production estimates were taken prior to Periods 1 and 4. During Periods 1, 2 and 4, the 48 cows were located on a daily basis between 06.00 and 09.00 h, and each animal location was recorded on gridded aerial photo maps. Pasture use was defined as the amount of total area utilized for grazing for the four periods.The overall mean for daily grazing hours was 9.4 h day−1 (633 observations) and no significant breed type differences were found. Daily grazing hours increased from 8.0 to 10.0 h day−1 during the 40-day observation period. Milk production and calf age significantly influenced daily grazing hours and the partial regression coefficients were 0.05 h·day−1·kg·day−1 and −0.02 h·day−1·day−1, respectively. The overall mean distance traveled was 4.7 km day−1 (82 observations) and followed the same trend as daily grazing hours. For each kilometer of travel, 2h were spent grazing during the four grazing periods. The 1S1H cows traveled less (P < 0.05) than HH, AH and 3S1H cows. Breed type means were 5.0, 4.8, 4.1 and 4.8 km day−1 for HH, AH, 1S1H and 3S1H cows, respectively. The overall mean for pasture use was 103 ha per cow (47 observations) and breed type was not significant in explaining variation in pasture use. For each kilogram increase in calf weight (adjusted for cow condition), pasture use increased by 0.5 ha (P < 0.05). Thus, the grazing behavior of different breed types under rangeland conditions was similar.  相似文献   

3.
The objectives of the study were to determine the effect of the partial replacement of soyabean meal and rapeseed meal with feed grade urea or a slow-release urea on the performance, metabolism and whole-tract digestibility in mid-lactation dairy cows. Forty-two Holstein–Friesian dairy cows were allocated to one of three dietary treatments in each of three periods of 5 weeks duration in a Latin square design. Control (C) cows were offered a total mixed ration based on grass and maize silages and straight feeds that included 93 g/kg dry matter (DM) soyabean meal and 61 g/kg DM rapeseed meal. Cows that received either of the other two treatments were offered the same basal ration with the replacement of 28 g/kg DM soyabean and 19 g/kg DM rapeseed meal with either 5 g/kg DM feed grade urea (U) or 5.5 g/kg DM of the slow-release urea (S; OptigenR; Alltech Inc., Kentucky, USA), with the content of maize silage increasing. There was no effect (P > 0.05) of dietary treatment on DM intake, which averaged 22.5 kg/day. Similarly, there was no effect (P > 0.05) of treatment on daily milk or milk fat yield but there was a trend (P = 0.09) for cows offered either of the diets containing urea to have a higher milk fat content (average of 40.1 g/kg for U and S v. 38.9 g/kg for C). Milk true protein concentration and yield were not affected by treatment (P > 0.05). Milk yield from forage and N efficiency (g milk N output/g N intake) were highest (P < 0.01) in cows when offered S and lowest in C, with cows receiving U having intermediate values. Cows offered S also tended to have the highest live weight gain (0.38 kg/day) followed by U (0.23 kg/day) and C (0.01 kg/day; P = 0.07). Plasma urea concentrations were higher (P < 0.05) at 2 and 4 h post feeding in cows when offered U and lowest in C, with animals receiving S having intermediate values. There was no effect (P > 0.05) of treatment on whole-tract digestibility. In conclusion, the partial replacement of soyabean meal and rapeseed meal with feed grade urea or a slow-release urea can be achieved without affecting milk performance or diet digestibility, with the efficiency of conversion of dietary N into milk being improved when the slow-release urea was fed.  相似文献   

4.
A grazing study was undertaken to examine the effect of maintaining three levels of pre-grazing herbage mass (HM) on dairy cow performance, grass dry matter (DM) production and output from perennial ryegrass (Lolium perenne L.) pastures. Cows were randomly assigned to one of three pre-grazing HM treatments: 1150 – Low HM (L), 1400 – Medium HM (M) or 2000 kg DM/ha – High HM (H). Herbage accumulation under grazing was lowest (P<0.01) on the L treatment and cows grazing the L pastures required more grass silage supplementation during the grazing season (+73 kg DM/cow) to overcome pasture deficits due to lower pasture growth rates (P<0.05). Treatment did not affect daily milk production or pasture intake, although cows grazing the L pastures had to graze a greater daily area (P<0.01) and increase grazing time (P<0.05) to compensate for a lower pre-grazing HM (P<0.01). The results indicate that, while pre-grazing HM did not influence daily milk yield per cow, adapting the practise of grazing low HM (1150 kg DM/ha) pasture reduces pasture DM production and at a system level may increase the requirement for imported feed.  相似文献   

5.
Propylene glycol (PG) is a gluconeogenic precursor widely used to prevent and treat ketosis postpartum. The study has investigated the effects of PG administration to dairy cows at mid stage of lactation. According to a 3 × 3 latin square design, three Italian Brown lactating cows (125 ± 7 days in milk) fitted with rumen cannula were fed a corn silage based diet (CP 14.7%, NDF 41.1% DM) with 0, 200 or 400 g day−1 PG added. Dry matter intake was increased by feeding PG with a significant quadratic component per dose (16.2, 17.2 and 16.5 kg day−1 for 0, 200 and 400 g PG day−1, respectively). Milk yield was not affected by PG, averaging 17.1 kg day−1. Average daily gain increased from 64 to 206 and 302 g day−1 when cows received 200 and 400 g day−1 of PG (linear component per dose P < 0.05). Digestibility of the diet did not differ among treatments, whereas repeated rumen fluid samples, taken 0, 2, 4, 6 and 8 h after the meal, showed a consistently lower acetate to propionate ratio when feeding PG. Blood insulin was not affected by PG administration. Except for therapeutic treatments, PG administration to dairy cows at mid stage of lactation should be advised against. Despite the positive effect on intake, administration of the additive, increasing the molar percentage of rumen propionate, contributes to shift the energy partition from milk production to liveweight gain.  相似文献   

6.
Twenty multiparous Friesian cows, 60–120 days postpartum, were allotted to two groups of ten cows each according to calving date, lactation number and daily yield, and assigned randomly to one of two diets in a crossover design experiment. The control diet was 45% maize silage (dry basis) and contained ground maize, soya bean meal and wheat bran in proportions which would ensure that the dietary dry matter contained 16.5% crude protein, 3.0 Mcal metabolizable energy kg−1 DM and 14% crude fibre. The treatment diet contained wet brewers grains substituted for maize silage, soya bean meal and wheat bran to change the ruminally undegradable protein from 35% to 39% of crude protein. Ground maize was included in the same quantity as in the control diet. The diets were offered individually, in tie-stalls, as total mixed rations in two equal amounts for ad libitum intakes. The experimental period lasted from 18 June to 12 August 1994. The cows were allowed exercise in an open lot without shade. Dry matter intake, milk protein content and yield, as well as content of milk lactose and non-fat solids were not significantly affected by the diet. In contrast, wet brewers grains supplementation increased actual milk yield (24.8 v. 21.7 kg day−1; P < 0.05), 4% fat-corrected milk yield (25.1 v. 21.1 kg day−1; P < 0.01), milk fat content (4.08 v. 3.82%; P < 0.05), milk total solids content (12.89 v. 12.44%; P < 0.05) and milk fat yield (1.01 v. 0.83 kg day−1; P < 0.05). Blood plasma concentrations of glucose, total protein, albumin, urea, triglycerides, cholesterol, phospholipids, sodium, potassium, calcium, phosphorus and magnesium were not affected by treatment.  相似文献   

7.
Licuri (Syagrus coronate) cake is a biodiesel by-product used in ruminant feed as a beneficial energy source for supplementation in managed pastures. The objective was to evaluate the performance, digestibility, nitrogen balance, blood metabolites, ingestive behavior and diet profitability of eight crossbred Holstein (3/4)×Gyr (5/8) multiparous cows (480±25 kg BW and 100 days milking) grazing and supplemented with licuri cake partially replacing ground corn and soybean meal in concentrate (0, 200, 400 and 600 g/kg in dry matter (DM)), distributed in an experimental duplicated 4×4 Latin square design. Licuri cake partially replacing ground corn and soybean meal increased (P<0.01) the intake and digestibility of ether extract and decreased the non-fiber carbohydrates; however, there were no influences on the intakes of DM, CP, NDF and total digestible nutrients (TDN). The digestibilities of DM, CP and NDF were not influenced by licuri cake addition. There was a decrease trend on TDN digestibility (P=0.08). Licuri cake replacing ground corn and soybean meal in concentrate did not affect the intake; fecal, urinary and mammary excretions; N balance; and triglycerides concentrations. However, the blood urea nitrogen (P=0.04) concentration decreased with the licuri cakes inclusion in cow supplementation. There was an increasing trend for serum creatinine (P=0.07). Licuri cake inclusion did not affect body condition score, production, yield, protein, lactose, total solids and solid non-fat contents of milk and Minas frescal cheese. There was a linear decrease in average daily weight gain (g/day). The milk fat concentration and cheese fat production (P<0.1) presented a linear increase with partial replacement of ground corn and soybean meal with licuri cakes. The addition of licuri cake did not alter the time spent feeding, ruminating or idling. There was an increasing trend in NDF feeding efficiency (P=0.09). The replacing of ground corn and soybean meal with licuri cake up to 600 g/kg decreased the concentrate cost by US$0.45/cow per day. Licuri cake replacing corn and soybeans (400 g/kg) in concentrate promoted a profit of US$0.07/animal per day. Licuri cake is indicated to concentrate the supplementation of dairy cows with average productions of 10 kg/day at levels up to 400 g/kg in the concentrate supplement because it provides an additional profit of US$0.07/animal per day and increased milk and Minas frescal cheese fat without negative effects on productive parameters.  相似文献   

8.
Alpine forages are assumed to have specific effects on ruminal digestion when fed to cattle. These effects were investigated in an experiment from two perspectives, either by using such forages as a substrate for incubation or as feed for a rumen fluid donor cow. In total, six 24-h in vitro batch culture runs were performed. Rumen fluid was collected from a non-lactating donor cow after having grazed pastures at ∼2000 m above sea level for 2, 6 and 10 weeks. These ‘alpine runs’ were compared with three lowland samplings from before and 2 and 6 weeks after the alpine grazing where a silage–concentrate mix was fed. In each run, nine replicates of four forages each were incubated. These forages differed in type and origin (alpine hay, lowland ryegrass hay, grass–maize silage mix, pure hemicellulose) as well as in the content of nutrients. Concentrations of phenolic compounds in the incubated forages were (g/kg dry matter (DM)): 20 (tannin proportion: 0.47), 8 (0.27), 15 (0.52) and 0 (0), respectively. Crude protein was highest in the silage mix and lowest with hemicellulose, whereas the opposite was the case for fiber. The total phenol contents (g/kg DM) for the high altitude and the lowland diet of the donor cow were 27 (tannins: 0.50 of phenols) and 12 (0.27), respectively. Independent of the origin of the rumen fluid, the incubation with alpine hay decreased (P < 0.05) bacterial counts, fermentation gas amount, volatile fatty acid (VFA) production as well as ammonia and methane concentrations in fermentation gas (the latter two being not lower when compared with hemicellulose). Alpine grazing of the cow in turn increased (P < 0.001) bacterial counts and, to a lesser extent, acetate proportion compared with lowland feeding. Further, alpine grazing decreased protozoal count (P < 0.05) and VFA production (P < 0.001) to a small extent, whereas methane remained widely unchanged. There were interactions (P < 0.05) between forage type incubated and feeding period of the donor cow in protozoal counts, acetate:propionate ratio, fermentation gas production and its content of methane, in vitro organic matter digestibility and metabolizable energy. Although increased phenolic compounds were the most consistent common property of the applied alpine forages, a clear attribution to certain effects was not possible in this study. As a further result, adaptation (long-term for donor cow, short term for 24 h incubations) appears to influence the expression of alpine forage effects in ruminal fermentation.  相似文献   

9.
A reduction in urinary nitrogen (N) excretion from dairy cows fed pasture containing a high N concentration in the dry matter (DM) will have environmental benefits, because losses to soil water and air by leachate and nitrous oxides (N2O) will be reduced. Condensed tannins (CT) reduce digestion of N, and provision as a dietary additive could have nutritional benefits for production, but the amount required and the responses to different sources of CT on milk production have not been defined. Two experiments were conducted to evaluate effects of supplementation with CT extracted from black wattle (Acacia mearnsii De Wild.) on milk production and faecal N concentration by lactating dairy cows grazing a vegetative Perennial ryegrass (Lolium perenne L.)-based pasture. In one experiment, CT was administered as a drench, twice daily, to 38 multiparous Holstein–Friesian cows assigned to four treatments; control (CONT, 0 g/day), low CT (LCT, 111 g/day), medium CT (MCT, 222 g/day) and high CT (HCT, 444 g/day), grazing as a single group. The CT supplementation affected milk yield (P < 0.001) with a trend of declining milk yield as CT concentration increased from about 0.6 to about 2.9% of dietary DM. Milk urea nitrogen (MUN) decreased at MCT and HCT levels of supplementation (P < 0.01) but milk fat, CP and lactose percentage were not affected by CT supplementation. The CT supplementation increased N concentration in faeces for LCT and MCT treatments (P < 0.05), suggesting partitioning of dietary N away from urine. When CT was pelleted with grain, in a second experiment and fed twice daily as a supplement at milking, it reduced the acceptability relative to pellets without CT, and tended to lower milk production from 25.4 to 24.5 kg/day, although the decline was not significant (P > 0.05). The diet of cows fed pellets with CT contained about 1.2% CT in the DM but neither milk constituents nor MUN were affected by CT-supplemented grain (P > 0.05). These findings demonstrate beneficial effects for production of low concentrations (c. 0.6% DM) of CT from black wattle when given to cows grazing pasture with an N concentration of 3.8%, and suggest a diversion of N from urine, but when CT exceeded about 1.4% of dietary DM, milk production was depressed. The value of supplementing a pasture diet for lactating dairy cows with black wattle tannin extract will depend on costs of supplementation, returns from milk production and liabilities associated with N losses to urine.  相似文献   

10.
This study examined the relationship of residual feed intake (RFI) with digestion, body composition, carcass traits and visceral organ weights in beef bulls offered a high concentrate diet. Individual dry matter (DM) intake (DMI) and growth were measured in a total of 67 Simmental bulls (mean initial BW 431 kg (s.d.=63.7)) over 3 years. Bulls were offered concentrates (860 g/kg rolled barley, 60 g/kg soya bean meal, 60 g/kg molasses and 20 g/kg minerals per vitamins) ad libitum plus 0.8 kg grass silage DM daily for 105 days pre-slaughter. Ultrasonic muscle and fat depth, body condition score (BCS), muscularity score, skeletal measurements, blood metabolites, rumen fermentation and total tract digestibility (indigestible marker) were determined. After slaughter, carcasses and perinephric and retroperitoneal fat were weighed, carcasses were graded for conformation and fat score and weight of non-carcass organs, liver, heart, kidneys, lungs, gall bladder, spleen, reticulo-rumen full and empty and intestines full, were determined. The residuals of the regression of DMI on average daily gain (ADG), mid-test metabolic BW (BW0.75) and the fixed effect of year, using all animals, were used to compute individual RFI coefficients. Animals were ranked on RFI and assigned to high (inefficient), medium or low groupings. Overall mean ADG and daily DMI were 1.6 kg (s.d.=0.36) and 9.4 kg (s.d.=1.16), respectively. High RFI bulls consumed 7 and 14% more DM than medium and low RFI bulls, respectively (P<0.001). No differences between high and low RFI bulls were detected (P>0.05) for ADG, BW, BCS, skeletal measurements, muscularity scores, ultrasonic measurements, carcass weight, perinephric and retroperitoneal fat weight, kill-out proportion and carcass conformation and fat score. However, regression analysis indicated that a 1 kg DM/day increase in RFI was associated with a decrease in kill-out proportion of 20 g/kg (P<0.05) and a decrease in carcass conformation of 0.74 units (P<0.05). Weight of non-carcass organs did not differ (P>0.05) between RFI groups except for the empty weight of reticulo-rumen, which was 8% lighter (P=0.05) in low RFI compared with high RFI bulls. Regression analysis indicated that a 1 kg DM/day increase in RFI was associated with a 1 kg increase in reticulo-rumen empty weight (P<0.05). Of the visceral organs measured, the reticulo-rumen may be a biologically significant contributory factor to variation in RFI in beef bulls finished on a high concentrate diet.  相似文献   

11.
A grazing trial utilizing 35 individually supplemented growing steers (211±42 kg initial body weight (BW)) was conducted to study the effect of supplemental escape protein on the performance of steers grazing on stargrass (Cynodon plectostachyus) during the dry season. N in supplements was 100%, 50%, or 0% natural protein (bloodmeal, coconut meal, and soybean meal), and 0%, 50% or 100% urea. All steers received 2 kg of supplement dry matter (DM) (2.2% N) daily during the 90 days of the experiment. Steers fed the urea supplement had the lowest ADG (0.97 kg day−1). There was a linear (P<0.05) response in ADG to the natural protein level (50 and 100%) in supplements containing bloodmeal (1.11 and 1.21 kg day−1) and coconut meal (1.05 and 1.21 kg day−1), but no response was observed with soybean meal (1.01 and 1.0 kg day−1). Forage intake was not affected by supplementation. As a result of the growth response observed for supplements containing bloodmeal and coconut meal above the urea-based and soybean meal supplements, it was concluded that growing ruminants grazing stargrass in the dry season were deficient in escape protein. ©1997 Elsevier Science B.V.  相似文献   

12.
The two most popular rumen-protected fatty acid supplements in dairy cow rations are calcium salts of palm oil fatty acid calcium salts of palm oil fatty acid (CSFA) and prilled saturated fatty acids (SFAs). The objectives of this study were to determine the effects of supplementing SFA in the form of triglycerides (TSFA), as compared to CSFA, on yields, efficiency and diet digestibility in high-yielding dairy cows. Twenty-eight (14 cows in each group) multiparous cows were fed a basal diet supplemented (on DM basis) with either 12 g/kg TSFA (~350 g/cow per day – contained 980 g/kg fat; 882.3 g/kg SFAs) or 14 g/kg CSFA (~440 g/cow per day – contained 800 g/kg fat; 566.4 g/kg SFAs). The supplement amounts in the diet were balanced according to fat content. Rumen samples were taken for measurements of ammonia and volatile fatty acids concentrations, and fecal samples were taken for digestibility measurements. The CSFA cows produced 3% higher milk yields (47.6 v. 46.2 kg/day; P < 0.0001) and 4.7% higher 4% fat-corrected milk (FCM; 44.7 v. 42.7 kg/day; P = 0.02) than the TSFA cows. No difference in milk-fat content was observed, but milk-protein content was higher in the TSFA than CSFA cows. Yields of fat and protein were similar, but lactose yields were higher in TSFA cows. There were no differences in dry matter intake or efficiency calculations between groups. The ruminal ammonia concentrations were similar between groups, whereas acetate concentrations and acetate : propionate ratio were greater for CSFA than TSFA cows. The apparent total-tract digestibility of dry (P < 0.0007) and organic matters (P < 0.0003), fat (P < 0.0001), NDF and ADF (P = 0.02) were lower in the TSFA v. CSFA cows. In conclusion, the CSFA-supplemented cows produced 3% higher milk and 4.7% higher 4% FCM than the TSFA cows. However, TSFA supplementation did not depress milk-protein content. The apparent total-tract digestibility was lower for all dietary components in the TSFA cows, which was probably due to the effects of both degree of saturation and triglyceride form of the TSFA supplement. Considering that diets were balanced according to the fat content of the supplements, the lower yields of milk and FCM observed in the TSFA than CSFA cows were likely due to the lower digestibility of the fat and other nutrients in the TSFA cows, which might have negatively influenced the dietary energy content.  相似文献   

13.
Involuntary soil intake by cows on pasture can be a potential route of entry for pollutants into the food chain. Therefore, it appears necessary to know and quantify factors affecting soil intake in order to ensure the food safety in outside rearing systems. Thus, soil intake was determined in two Latin square trials with 24 and 12 lactating dairy cows. In Trial 1, the effect of pasture allowance (20 v. 35 kg dry matter (DM) above ground level/cow daily) was studied for two sward types (pure perennial ryegrass v. mixed perennial ryegrass–white clover) in spring. In Trial 2, the effect of pasture allowance (40 v. 65 kg DM above ground level/cow daily) was studied at two supplementation levels (0 or 8 kg DM of a maize silage-based supplement) in autumn. Soil intake was determined by the method based on acid-insoluble ash used as an internal marker. The daily dry soil intake ranged, between treatments, from 0.17 to 0.83 kg per cow in Trial 1 and from 0.15 to 0.85 kg per cow in Trial 2, reaching up to 1.3 kg during some periods. In both trials, soil intake increased with decreasing pasture allowance, by 0.46 and 0.15 kg in Trials 1 and 2, respectively. In Trial 1, this pasture allowance effect was greater on mixed swards than on pure ryegrass swards (0.66 v. 0.26 kg reduction of daily soil intake between medium and low pasture allowance, respectively). In Trial 2, the pasture allowance effect was similar at both supplementation levels. In Trial 2, supplemented cows ate much less soil than unsupplemented cows (0.20 v. 0.75 kg/day, respectively). Differences in soil intake between trials and treatments can be related to grazing conditions, particularly pre-grazing and post-grazing sward height, determining at least in part the time spent grazing close to the ground. A post-grazing sward height lower than 50 mm can be considered as a critical threshold. Finally, a dietary supplement and a low grazing pressure, that is, high pasture allowance increasing post-grazing sward height, would efficiently limit the risk for high level of soil intake, especially when grazing conditions are difficult. Pre-grazing and post-grazing sward heights, as well as faecal crude ash concentration appear to be simple and practical tools for evaluating the risk for critical soil intake in grazing dairy cows.  相似文献   

14.
A calorimetric experiment of 4 × 4 Latin square design was undertaken to study the effect of sugar-beet pulp (SBP), maize starch, sucrose and xylose on energy metabolism in sheep. The four diets comprised a diet (A) of dried grass, soya-bean meal and SBP (450, 50 and 500 g kg−1 on dry matter (DM) basis) and corresponding diets in which 400 g kg−1 of SBP was replaced by maize starch (B), sucrose (C) or xylose (D); all diets were offered at a level of 600 g DM day−1. After the Latin square was completed, energy value of the basal diet of dried grass and soya-bean meal (900 and 100 g kg−1 DM; 600 g day−1) was determined in the same four sheep.Treatment differences in organic matter, gross energy, nitrogen (N) and neutral detergent fibre (NDF) digestibility were non-significant. Differences in N retention were not significant.Digestible energy (DE) contents (MJ kg−1 DM) were 13.27, 13.22, 13.21 and 13.21 MJ kg−1 for diets A, B, C and D, respectively. Energy loss in methane was higher (P < 0.05) for Diet A than for other diets. Metabolizable energy (ME) contents for the diets A-D were 11.25, 11.22, 11.32 and 11.40 MJ kg−1 DM, respectively. Metabolizability (q) of the diets averaged 0.642 and was not significantly affected by the diet given. There was a trend for heat production to be higher in sheep given the sucrose-containing diet (C) than in those given other diets (6.34 versus 6.04 MJ day−1) and as a result, energy retention was lower (0.38 versus 0.64 MJ day−1), but the difference did not reach statistical difference. Efficiencies of utilization of ME for maintenance and fattening (kmf) averaged 0.67 and were in good agreement with those predicted from equations of the Agricultural Research Council (1980) excepting the lower kmf (0.63) for Diet C.The mean ME content of SBP calculated by difference was 13.05 MJ kg−1 DM and the corresponding values for mixtures of SBP + starch, SBP + sucrose and SBP + xylose (600 and 400 g kg−1 DM) were 12.98, 13.16 and 13.36 MJ kg−1 DM, respectively.  相似文献   

15.
In immunocastrated (IC) pigs, revaccination (V2) increases lipid deposition (LD) because of increased voluntary feed intake; but little is known on associated effect of diet composition on partitioning of nutrients in IC pigs. Digestibility measurements, N and energy balances in respiration chambers were performed in two subsequent stages in four replicates of two male littermates to determine the changes between 85 (stage 1) and 135 (stage 2) kg live weight due to combined effect of IC, growth and increased feed intake (IC/growth). During stage 1, pigs received a standard low-fat diet (LF diet; 2.5% dry matter (DM) of fat fed at 2.27 MJ metabolizable energy (ME)/kg BW0.60 per day), whereas during stage 2, feed intake was increased to 2.47 MJ ME/kg BW0.60 per day and one littermate was fed LF diet whereas the second received a fat-enriched diet (HF diet; 8.9% DM of fat) to determine the effect of increased dietary fat content on energy utilization in IC pigs. Results from N balance and measurements of gas exchanges were used to calculate respiratory quotient (RQ), heat production (HP), nutrient contribution to fat retention, components of HP, protein deposition (PD) and LD. Nutrients and energy apparent digestibility coefficients, methane losses and N retention (P<0.05) increased with IC/growth. Despite higher ME intake, total HP remained similar (1365 kJ/kg of BW0.60 per day; P=0.47) with IC/growth. Consequently, total retained energy (RE) increased with IC/growth (from 916 to 1078 kJ/kg of BW0.60 per day; P<0.01) with a higher fat retention (625 to 807 kJ/kg BW0.60 per day; P<0.01), originating mainly from carbohydrates associated with a higher lipogenesis (536 to 746 kJ/kg BW0.60 per day; P<0.01) and RQ (1.095 to 1.145; P<0.01). Both PD (from 178 to 217 g/day; P=0.02) and LD (from 227 to 384 g/day; P<0.01) increased due to IC/growth. Feeding HF diet after IC was associated with increased crude fat digestibility (P<0.01) and increased RE as fat (807 to 914 kJ/kg BW0.60 per day; P=0.03), originating mainly from dietary fat (P<0.01) and resulting in increased LD (384 to 435 g/day; P<0.01) and lower RQ (from 1.145 to 1.073; P<0.01). Altogether, present results indicate that increased fatness of IC pigs is a result of increased daily LD caused by higher energy intake and lower basal metabolic rate. In addition, LD is further enhanced by dietary energy enrichment with fat after V2.  相似文献   

16.
The silvopastoral system (SPS) has been suggested to ensure sustainability in animal production systems in tropical ecosystems. The objective of this study was to evaluate pasture characteristics, herbage intake, grazing activity and milk yield of Holstein×Zebu cows managed in two grazing systems (treatments): SPS dominated by a graminaceous forage (Brachiaria decumbens) intercropped with different leguminous herbaceous forages (Stylosanthes spp., Pueraria phaseoloides and Calopogonium mucunoides) and legume trees (Acacia mangium, Gliricidia sepium and Leucaena leucocephala), and open pasture (OP) of B. decumbens intercropped only with Stylosanthes spp. Pastures were managed according to the rules for organic cattle production. The study was carried out by following a switch back format with 12 cows, 6 for each treatment, over 3 experimental years. Herbage mass was similar (P>0.05) for both treatments, supporting an average stocking rate of 1.23 AU/ha. Daily dry matter intake did not vary (P>0.05) between treatments (average of 11.3±1.02 kg/cow per day, corresponding to 2.23±0.2% BW). Milk yield was higher (P<0.05; 10.4±0.06 kg/cow per day) in the SPS than in the OP (9.5±0.06 kg/cow per day) during the 1st year, but did not significantly differ (P>0.05) in subsequent years. The highest (P<0.05) values for herbage mass and milk yield were observed during the 3rd year. In the SPS, with moderate shade (19% shade relative to a full-sun condition), the grass CP was higher (P<0.05) than in the OP, although the NDF content and digestibility coefficient were not modified. The animals spent more time (P<0.05) idling in the SPS than in OP. The higher legume proportion in the SPS was associated with the higher CP level in B. decumbens relative to the OP, which could explain the better (P<0.05) performance of the cows in silvopastoral areas during the 1st year. However, during the 2nd and 3rd years, similarities in the legume percentages of both systems resulted in similar (P>0.05) milk yields. Low persistence of Stylosanthes guianensis was observed over the experimental period, indicating that the persistence of forage legumes under grazing could be improved using adapted cultivars that have higher annual seed production. The SPS and a diversified botanical composition of the pasture using legume species mixed with grasses are recommended for organic milk production.  相似文献   

17.
Animal performances were monitored in 30 Friesean dry cows (18 multiparous, MP-cows and 12 primiparous, PP-cows) starting six weeks before calving to eight weeks after calving. The cows were kept indoors and fed individually with a prepartum diet containing either low, moderate or high energy (0.75, 1.00 or 1.25 of the calculated ME requirement) and supplemented with low (0.3 kg day−1) or high (1.5 kg day−1) rapeseed meal (RSM). The diets were consisted of 1.5 kg hay, 20–25 kg wilted grass silage and grain (barley and oat, 1 : 1 DM basis) with RSM. The average ME intake during six weeks of prepartum was 75, 97 and 123 MJ day−1 on three different energy levels. After calving the cows were fed grass silage ad lib, 6.5 kg (primiparous) or 8.5 kg (multiparous) grain and 1.5 kg RSM. Liver biopsy and blood samples were taken to determine differences in metabolites due to diet and parity. Reduction of prepartum energy allowance to 0.75 of the moderate level did not affect the calf's birth weight and colostrum composition. Cows fed prepartum low energy–high rapeseed meal diet (LEHR) showed a faster increase in feed intake and milk production after parturition. Continuous low feed intake and milk production were observed in cows fed a prepartum high energy–low rapeseed meal diet (HELR). Milk yield was constantly lower for cows fed prepartum high energy diet, the difference being significant (p<0.01 and p<0.05) at six and seven weeks of lactation. Overall milk yield also showed a linear decrease with energy feeding level and an increase (p<0.10) with RSM feeding levels. Prepartum high energy feeding increased (p<0.01) milk protein content. Neither energy nor RSM feeding level affected the liver fat infiltration of the experimental cows. Cow parity however showed a significant influence on liver fat content, β-hydroxybutyrate (BHBA) and plasma glucose. A week before calving, the plasma concentration of essential amino acids (EAA) was lower for cows fed prepartum low energy diet. During the first four weeks of lactation, the concentrations of plasma non-esterified fatty acids (NEFA) and insulin were similar for all the treatment group.  相似文献   

18.
Condensed tannins (CTs) are phenolic compounds derived from secondary plant metabolism that act as part of the plant's chemical defense system against pathogen invasion and herbivorous attack. This study aimed to evaluate the intake, digestibility, nitrogen (N) balance, production and composition of milk from goats fed cassava silage with added levels of CTs. Eight Anglo-Nubian goats with a mean BW of 40 ± 2.0 kg were distributed in a double Latin square design with four levels of CTs (0, 25, 50 and 75 g/kg DM) with four 20-day periods with 15 days of adaptation and five evaluation days for each period. No differences were observed in DM, NDF, CP intake and feed conversion (grams of DM intake (DMI) per gram of milk produced); however, when expressed as percent of BW, DMI showed a quadratic increase to 29.1 g/kg. As the level of supplemented CTs increased in the diet, the CP digestibility (P = 0.023), NDF (P = 0.044), non-fiber carbohydrates (NFC; P = 0.032) and total digestible nutrients (P = 0.033) exhibited a linear decrease. Furthermore, the addition of CTs to cassava silage induced a linear increase in N-fecal excretion (P = 0.014) and a positive quadratic effect on N-retained (P = 0.014) and N-balance (P = 0.024) as well as a positive quadratic trend in N-digested (P = 0.092). Milk urea N (P = 0.023) decreased linearly. The addition of CTs to cassava silage had a positive quadratic effect on ruminating time (P = 0.011). In addition, comparing the use or non-use from the orthogonal contrast test, the inclusion of CTs in goat diet increased water and N-intake, CP and NDF digestibility, spent time eating and ruminating and N-balance and decreased milk production corrected3.5%, fat milk content, milk urea N and dry defatted extract of milk. Thus, adding CTs to cassava silage at 25 g/kg total DM promoted goats' greater use of the diet without impairing feed conversion and the quality of goat milk produced. Dietary levels of 50 and 75 g/kg total DM are not recommended because under the conditions of this study, they reduced the productive efficiency of dairy goats.  相似文献   

19.
In ruminants, methane (CH4) is a by-product of digestion and contributes significantly to the greenhouse gas emissions attributed to agriculture. Grazed grass is a relatively cheap and nutritious feed but herbage species and nutritional quality vary between pastures, with management, land type and season all potentially impacting on animal performance and CH4 production. The objective of this study was to evaluate performance and compare CH4 emissions from cattle of dairy and beef origin grazing two grassland ecosystems: lowland improved grassland (LG) and upland semi-natural grassland (UG). Forty-eight spring-born beef cattle (24 Holstein–Friesian steers, 14 Charolais crossbred steers and 10 Charolais crossbred heifers of 407 (s.d. 29), 469 (s.d. 36) and 422 (s.d. 50) kg BW, respectively), were distributed across two balanced groups that grazed the UG and LG sites from 1 June to 29 September at stocking rates (number of animals per hectare) of 1.4 and 6.7, respectively. Methane emissions and feed dry matter (DM) intake were estimated by the SF6 tracer and n-alkane techniques, respectively, and BW was recorded across three experimental periods that reflected the progression of the grazing season. Overall, cattle grazed on UG had significantly lower (P<0.001) mean daily DM intake (8.68 v. 9.55 kg/day), CH4 emissions (176 v. 202 g/day) and BW gain (BWG; 0.73 v. 1.08 kg/day) than the cattle grazed on LG but there was no difference (P>0.05) in CH4 emissions per unit of feed intake when expressed either on a DM basis (20.7 and 21.6 g CH4 per kg DM intake for UG and LG, respectively) or as a percentage of the gross energy intake (6.0% v. 6.5% for UG and LG, respectively). However, cattle grazing UG had significantly (P<0.001) greater mean daily CH4 emissions than those grazing LG when expressed relative to BWG (261 v. 197 g CH4/kg, respectively). The greater DM intake and BWG of cattle grazing LG than UG reflected the poorer nutritive value of the UG grassland. Although absolute rates of CH4 emissions (g/day) were lower from cattle grazing UG than LG, cattle grazing UG would be expected to take longer to reach an acceptable finishing weight, thereby potentially off-setting this apparent advantage. Methane emissions constitute an adverse environmental impact of grazing by cattle but the contribution of cattle to ecosystem management (i.e. promoting biodiversity) should also be considered when evaluating the usefulness of different breeds for grazing semi-natural or unimproved grassland.  相似文献   

20.
In total, 20 multiparous Holstein-Friesian dairy cows received one of four diets in each of four periods of 28-day duration in a Latin square design to test the hypothesis that the inclusion of lucerne in the ration of high-yielding dairy cows would improve animal performance and milk fatty acid (FA) composition. All dietary treatments contained 0.55 : 0.45 forage to concentrates (dry matter (DM) basis), and within the forage component the proportion of lucerne (Medicago sativa), grass (Lolium perenne) and maize silage (Zea mays) was varied (DM basis): control (C)=0.4 : 0.6 grass : maize silage; L20=0.2 : 0.2 : 0.6 lucerne : grass : maize silage; L40=0.4 : 0.6 lucerne : maize silage; and L60=0.6 : 0.4 lucerne : maize silage. Diets were formulated to contain a similar CP and metabolisable protein content, with the reduction of soya bean meal and feed grade urea with increasing content of lucerne. Intake averaged 24.3 kg DM/day and was lowest in cows when fed L60 (P<0.01), but there was no effect of treatment on milk yield, milk fat or protein content, or live weight change, which averaged 40.9 kg/day, 41.0, 30.9 g/kg and 0.16 kg/day, respectively. Milk fat content of 18:2 c9 c12 and 18:3 c9 c12 c15 was increased (P<0.05) with increasing proportion of lucerne in the ration. Milk fat content of total polyunsaturated fatty acids was increased by 0.26 g/100 g in L60 compared with C. Plasma urea and β-hydroxybutyrate concentrations averaged 3.54 and 0.52 mmol/l, respectively, and were highest (P<0.001) in cows when fed L60 and lowest in C, but plasma glucose and total protein was not affected (P>0.05) by dietary treatment. Digestibility of DM, organic matter, CP and fibre decreased (P<0.01) with increasing content of lucerne in the diet, although fibre digestibility was similar in L40 and L60. It is concluded that first cut grass silage can be replaced with first cut lucerne silage without any detrimental effect on performance and an improvement in the milk FA profile, although intake and digestibility was lowest and plasma urea concentrations highest in cows when fed the highest level of inclusion of lucerne.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号