首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells stably infected with Rous sarcoma virus were treated with tunicamycin to prevent the glycosylation of the precursor (pr92gp) to the two viral envelope glycoproteins gp85 and gp35. Pretreatment of the cells for 4 h with the antibiotic resulted in a 90% reduction in [3H]mannose incorporation into total cellular glycoproteins, intracellular viral glycoproteins, and released virus particles. Protein synthesis and virus particle formation were not significantly affected by the treatment. A new polypeptide made in the presence of the drug was identified by immunoprecipitation of pulse-labeled cell lysates with monospecific anti-gp85 and anti-gp35 sera. This polypeptide, migrating on sodium dodecyl sulfate-polyacrylamide gels as a molecule of 62,000 daltons (pr62), contained no [3H]mannose, was labeled with [S35]methionine and [3H]arginine, could not be chased into the higher-molecular-weight glycosylated form, and contained the same [3H]arginine tryptic peptides as pr92gp. The unglycosylated pr62 was still detectable 2 h after the pulse labeling of the cells. The lack of glycosylation of pr62 did not seem to reduce its stability. No clear evidence for the incorporation of this molecule or its cleavage products into viral particles could be obtained. To code for an envelope polypeptide of 62,000 daltons, only about 1,500 nucleotides or 15% of the total coding capacity of the virus are needed.  相似文献   

2.
3.
Immune precipitation with monospecific antiserum was employed to study the intracellular synthesis of viral glycoproteins gp85 and gp37. Labeled gp85 and gp37 were detected from lysates of cells transformed with Rous sacroma virus, strain B77, after long-term labeling with radioactive glucosamine or phenylalanine. Immune precipitates prepared from lysates of cells pulse-labeled for a short time resulted in a glycoprotein of 92,000 molecular weight (gp92). This precursor was stable in B77-transformed Japanese quail cells for several hours, whereas in chicken cells it could be chased within a few hours into virion glycoproteins gp85 and gp37. Similarly, the precursor for the structural viral proteins, pr76, persisted in quail cells much longer than in chicken cells. During very short pulses or in the presence of a glucosamine block (25 mM glucosamine), the antiserum against the viral envelope glycoproteins detected a precursor of higher electrophoretic mobility of approximately 70,000 molecular weight, "p70." Fucose label entered gp92 and gp85 as well as "p70." Proteolytic treatment of virion-bound gp85 in vitro generated two discrete glycoproteins of 62,000 and 45,000 molecular weight, but did not result in an increase in the amount of gp37.  相似文献   

4.
The kinetics of cleavage of pr92gp, the precursor of the two glycoproteins of Rous sarcoma virus gp85 and gp35, were followed. Viral glycoproteins were detected by immunoprecipitation with anti-gp85 and anti-gp35 serum. It could be shown in pulse-chase experiments that little or no intracellular cleavage of the precursor took place during the time in which the majority of newly synthesized viral glycoprotein was exported from the cells. Soon after its synthesis, however, pr92gp underwent some modification that made it migrate slightly faster on sodium dodecyl sulfate-polyacrylamide gels. Under steady state conditions the precursor was shown to be the predominant form of intracellular viral glycoprotein. Virus which was harvested every 2 min from infected cells prelabeled for 90 min with [3H]mannose contained mostly uncleaved and only a little mature glycoprotein. By incubation of this freshly released virus in serum-free buffer, the majority of the glycoprotein precursor could be cleaved into mature gp85 and gp35. Virus harvested every 10 min contained only mature glycoproteins.  相似文献   

5.
6.
Viral protein synthesis in Moloney murine leukemia virus infected high passage mouse embryo cells was studied utilizing monospecific antisera to the viral core protein p30 and envelope protein gp71. Pulse-chase analysis of [35S]methionine-labeled polypeptides in combination with the demonstration of the presence of either gp71 or p30-specific antigenic determinants in them indicated a 84,000-dalton polypeptide as the precursor of viral glycoproteins and four metabolically unstable polypeptides of approximate molecular weights 88,000, 72,000, 62,000, and 39,000 as the precursors of viral core protein, p30. The p30-containing 88,000 and 72,000-dalton polypeptides were distinctly seen in this system under normal growth conditions. Further, the processing of p30 precursors was very rapid and was complete during a 40 min chase while only partial processing of glycoprotein precursor was observed during the same period.  相似文献   

7.
The viral RNA of the Harvey strain of murine sarcoma virus (Ha-SV), which does not encode for any known viral structural polypeptides, has been translated in a nuclease-digested, cell-free system. The major protein product of the in vitro translation reaction has a molecular weight of 21,000 and is initiated faithfully with [35S]formylmethionine from formyl-[35S]methionyl-tRNAFMET. This polypeptide is clearly distinct from the RNA of the Moloney strain of type C helper virus used to pseudotype the Ha-SV. The intensity of the 21,000-dalton polypeptide on gels correlates well to the concentration of Ha-SV RNA in different viral RNA preparations. These experiments indicate that a polypeptide marker for Ha-SV is now available for the first time. The possibility that this protein is the product of the rat portion of the Ha-SV genome is discussed.  相似文献   

8.
Hog cholera virus: molecular composition of virions from a pestivirus.   总被引:37,自引:19,他引:18       下载免费PDF全文
Virions from hog cholera virus (HCV), a member of the genus Pestivirus, were analyzed by using specific antibodies. The nucleocapsid protein was found to be a 14-kDa molecule (HCV p14). An equivalent protein could also be demonstrated for virions from another pestivirus, bovine viral diarrhea virus. The HCV envelope is composed of three glycoproteins, HCV gp44/48, gp33, and gp55. All three exist in the form of disulfide-linked dimers in virus-infected cells and in virions; HCV gp44/48 and gp55 each form homodimers, whereas gp55 is also found dimerized with gp33. Such complex covalent interactions between structural glycoproteins have not been described so far for any RNA virus.  相似文献   

9.
Solubilized polypeptides of the murine mammary tumor virus (MuMT virus) were chromatographed on a column of immobilised concanavalin A. The unbound viral material was rechromatographed on phosphocellulose, resulting in the isolation of the major proteins with a molecular weight of 28000 (p28) and 12000 (p12) respectively. The adsorbed glycopolypeptides after elution with methyl alpha-D-mannopyranoside were subjected to gel filtration. The major glycoprotein with a molecular weight of 52000 (gp52) was obtained in an almost pure form. However, a considerable part of gp52 elutes together with a glycoprotein with a molecular weight of 36000 (gp36), suggesting that in addition to the free form of gp52 a complex exists of gp52 plus gp36.  相似文献   

10.
Chicken embryo fibroblasts infected with an RNA- temperature-sensitive mutant (ts24) of Sindbis virus accumulated a large-molecular-weight protein (p200) when cells were shifted from the permissive to nonpermissive temperature. Appearance of p200 was accompanied by a decrease in the synthesis of viral structural proteins, but [35S]methionine tryptic peptides from p200 were different from those derived from a 140,000-molecular-weight polypeptide that contains the amino acid sequences of viral structural proteins. Among three other RNA- ts mutants that were tested for p200 formation, only one (ts21) produced this protein. The accumulation of p200 in ts24- and ts21-infected cells could be correlated with a shift in the formation of 42S and 26S viral RNA that led to an increase in the relative amounts of 42S RNA. These data indicate that p200 is translated from the nonstructural genes of the virion 42S RNA and further suggest that this RNA does not function effectively in vivo as an mRNA for the Sindbis virus structural proteins.  相似文献   

11.
The bovine leukemia virus (BLV) was purified from a chronically infected fetal lamb kidney cell line. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of this virus revealed the presence of eight distinguishable viral components with molecular weights ranging from 80,000 to 11,000. The major component is a non-glycosylated protein having a molecular weight of 24,000 (p24). At least three heavier polypeptides were found, one of them representing a glycoprotein (gp 60). In addition, four minor polypeptides with respective molecular weights of 19,000, 16,000, 13,000, and 11,000 were identified. In a complement fixation assay using naturally occurring antibodies of a leukemic cow, four polypeptides, which included gp 60, p35, p24, and p16, were found to be reactive.  相似文献   

12.
Two inhibitors of glycosylation, 2-deoxyglucose and tunicamycin, depressed the synthesis of infectious Rous sarcoma virus greater than 100-fold. Under the same conditions only a two- to threefold decrease in the production of virus particles was observed. The noninfectious particles had a lower density (1.145 g/ml) in isopycnic sucrose gradients and lacked the two virion glycoproteins, gp85 and gp37, found on infectious virions. The four internal structural proteins of the virus, p27, p19, p15, and p12, appeared to be assembled normally into the noninfectious virus. Polypeptides related to the Rous sarcoma virus glycoproteins were immunoprecipitated from pulse-labeled Rous sarcoma virus (Prague strain, subgroup B)-transformed cells. pr95gp, the polyprotein precursor to gp85 and gp37, was the major protein precipitated from untreated cells. PR95GP, THE POLYPROTEIN PRECURSOR TO GP85 AND GP37, WAS THE MAJOR PROTEIN PRECIPITATED FROM UNTREATED CELLS. This was absent in both tunicamycin- and 2-deoxyglucose-treatec ells, and a new polypeptide of molecular weight 57,000 to 58,000 was the major species precipitated. In tunicamycin-treated cells this product was unstable and was degraded during a 2-h chase; in 2-deoxyglucose-treated cells, on the other hand, the polypeptide appeared to be more stable and underwent partial glycosylation. The synthesis and processing of pr76, the polyprotein precursor to the internal structural proteins of the virion, occurred normally in both treated and untreated cells. It is concluded that the unglycosylated env gene product is a polypeptide of molecular weight 57,000 to 58,000.  相似文献   

13.
The amino-terminal amino acid sequences of gp85 and gp37, the envelope glycoproteins of Rous sarcoma virus (RSV), were determined. Alignment of these sequences with the amino acid sequence predicted from the complete nucleotide sequence of the Prague strain of RSV, subgroup C (PR-C), has allowed us to delineate the env gene-coding region of this virus. The coding sequences for gp85 and gp37 have been placed in an open reading frame that extends from nucleotide 5045 to nucleotide 6862 and predict sizes of 341 amino acids (36,962 molecular weight) for gp85 and 198 amino acids (21,566 molecular weight) for gp37. Carbohydrate makes a significant contribution to the observed molecular weights of these polypeptides--the amino acid sequence contains 14 potential glycosylation sites (Asn-X-Ser/Thr) in gp85 and two in gp37. Experiments aimed at estimating the number of carbohydrate side chains yielded results consistent with most or all of these sites being occupied. Although an initiation codon is located early (codon 4) in the open reading frame, it is likely that splicing yields an mRNA on which translation initiates at the same AUG as that of the gag gene to produce a nascent polypeptide in which gp85 is preceded by a 62-amino-acid-long leader peptide. This leader contains the hydrophobic sequence (signal sequence) necessary for translocation across the endoplasmic reticulum and is completely removed from the env gene product during translation. The polyprotein precursor, Pr95env, is cleaved to gp85 and gp37 at the carboxyl side of the basic sequence:-Arg-Arg-Lys-Arg-. gp85 is attached through a disulphide linkage to gp37, and although the positions of the cysteines involved in this linkage are not known, the presence of a 27-amino-acid-long hydrophobic region at the carboxy-terminus of gp37 is consistent with its role as a membrane anchor for the viral glycoprotein complex. The location of host range variable regions with respect to the possible tertiary structure of the complex is discussed.  相似文献   

14.
Identification of the Epstein-Barr virus gp85 gene.   总被引:15,自引:15,他引:0       下载免费PDF全文
T Heineman  M Gong  J Sample    E Kieff 《Journal of virology》1988,62(4):1101-1107
  相似文献   

15.
16.
Phosphorylation of African swine fever virus proteins in vitro and in vivo   总被引:3,自引:0,他引:3  
M L Salas  J Salas  E Vi?uela 《Biochimie》1988,70(5):627-635
  相似文献   

17.
Murine mammary tumor virus protein interactions in the intact virion structure were studied with the use of the cleavable cross-linking reagents dithiobis(succinimidyl propionate) and methyl 4-mercaptobutyrimidate hydrochloride. Cross-linked oligomeric complexes of murine mammary tumor virus proteins were analyzed by two-dimensional gel electrophoresis. Among the complexes most consistently formed were a heterodimer of the two glycoproteins gp36 and gp52, the homodimer of gp36, and the homotrimer of gp52. A very prominent oligomer formed at higher concentrations of dithiobis(succinimidyl propionate) was a complex of about 230,000 molecular weight, made up of three molecules each of gp36 and gp52. A number of lines of evidence, including electron microscopic analysis, suggest that the 230,000-molecular-weight complex actually represents the murine mammary tumor virus spike structure. Of the murine mammary tumor virus core proteins, p14 forms homooligomers most readily. Upon cross-linking with methyl 4-mercaptobutyrimidate hydrochloride a small amount of what seems to be a heterodimer made up of the N-terminal gag protein p10 and the hydrophobic membrane glycoprotein gp36 can be observed.  相似文献   

18.
Polypeptides released into the culture medium of herpesvirus sylvilagus-infected cells were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extracellular fluid from [35S]methionine- and [3H]glucosamine-labeled cell cultures. Virus-induced glycoproteins 31, 32, and 33 (molecular weights of 62,000, 59,000, and 54,000, respectively) were the most abundant species and appeared predominantly in the culture medium. This observation, together with the known cell-associated nature of herpesvirus sylvilagus, suggested that virus-induced glycoproteins 31, 32, and 33 were specifically released. Immunization of rabbits with virus-induced glycoproteins 13 (molecular weight of 130,000) and 32 resulted in the production of antibodies that neutralized viral infectivity in vitro. Both antiserum to gp13 and antiserum to gp32 immunoprecipitated gp13, gp26, gp33a, gp45, and virus-induced polypeptide 39 (molecular weights of 130,000, 77,000, 49,000, 27,000, and 36,000, respectively) from [35S]methionine-labeled cell extracts as well as virus-induced glycoproteins 31, 32, and 33 from the culture medium. In addition, membrane immunofluorescence assays indicate that an antigen(s) reactive with anti-gp13/32 serum was located on the plasma membrane of infected cells.  相似文献   

19.
Preparations of Rous sarcoma virus (RSV) can form an infectious viral-antibody complex with antibodies raised against the major glycoprotein, gp85, isolated from avian myeloblastosis virus and Prague-RSV subgroup C. Binding of anti-gp85 antibodies to RSV can be demonstrated by the inhibition of focus-forming activity after addition of goat anti-rabbit immunoglobulin and by a shift in density of virions treated with anti-gp85 serum. Group- rather than subgroup- specific regions of viral gp85 appear to be the site of binding for infectious complex.  相似文献   

20.
A scheme was developed for the subcellular fractionation of murine erythroleukemia cells transformed by Friend leukemia virus. The subcellular localization of the env-related glycoproteins was determined by immune precipitation with antiserum against gp70, the envelope glycoprotein of the helper virus, followed by gel electrophoresis. In cells labeled for 2 h with [35S]methionine, the glycoprotein encoded by the defective spleen focus-forming virus, gp55SFFV, was found primarily in the nuclear fraction and in fractions containing dense cytoplasmic membranes such as endoplasmic reticulum. A similar distribution was noted for gp85env, the precursor to gp70. The concentration of viral glycoproteins in the nuclear fraction could not be accounted for by contamination with endoplasmic reticulum. In pulse-chase experiments, neither glycoprotein underwent major redistribution. However, labeled gp85env disappeared from intracellular membranes with a half-time of 30 min to 1 h, whereas labeled gp55SFFV was stable during a 2-h chase. In plasma membrane preparations with very low levels of contamination with endoplasmic reticulum, gp70 was the major viral env-related glycoprotein detected; a minor amount of gp55SFFV and no gp85env could be detected. The unexpected result of these experiments is the amount of viral glycoproteins found in the nuclear fraction. Presence of viral proteins in the nucleus could be relevant to the mechanism of viral leukemogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号