首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cytological preparations were incubated in 0.07 N NaOH at room temperature or 90% formamide (final salt concentration 2 × SSC) at either 65 °C or 37 °C for 2.5 h to denature guinea pig chromosomes. Chromosomes treated with NaOH or formamide at 65 °C showed a large amount of DNA loss, while chromosomes treated with formamide at 37 °C showed little or no DNA loss. Repeated sequences were isolated from guinea pig DNA and [3H]cRNA was transcribed with Escherichia coli RNA polymerase for in situ hybridization. Localization of the [3H]cRNA occurred in the centromeric regions and C-band positive short arms of almost all of the chromosomes in the NaOH preparations. Chromosomes treated with formamide at 65 °C showed the same grain distribution with a decrease in the number of grains/cluster. Slides incubated in formamide at 37 °C showed localization in only a few chromosomes and the number of grains/cluster was greatly diminished. Thermal denaturation of isolated chromatin indicated that incubation of chromosomes in formamide at 37 °C did not fully denature the DNA. C-bands could be induced by treating slides in formamide at either 65 °C or 37 °C when followed by a “reassociation” in 2 × SSC at 65 °C for 16 h. If the “reassociation” step was omitted, C-bands were found in the 65 °C formamide slides but not the 37 °C formamide slides.  相似文献   

3.
In order to increase the efficiency, accuracy, fidelity and reliability of in situ hybridization to identify the alien chromosomes and chromosome fragments in triticeae, major steps including probe labelling, chromosome denaturation, DNA concentration for blocking and post-hybridization washing in in situ hybridization were optimized. The results are as fel-lows. (1) The cloned repetitive DNA sequence could be biotin labelled more efficiently by nick translation than by random oligonucleotide labelling method: whereas the random oligonucleotide labelling is more suitable for genomic DNA probe and the labelling efficiency could be increased by prolonging the labelling time appropriately. (2) Denaturation of the biotinylated probe and chromosomes together in oven at 75 ℃ showed the satisfactory results of in situ hybridization, but the contour of treated rye chromosomes often became blurred when the temperature of denaturation was higher than 85℃. When 70% formamide (in 2 × SSC) was used to denature the chromosome DNA, rye chromosomes often swelled although the biotinylated signals could be detected. (3) The unlabeled DNA concentrations for blocking were tested in genomic in situ hybridization to detect the Haynaldia villosa chromosomes with biotin labelled H. villosa genomic DNA as probe. The best contrast between H. villosa and wheat chromosomes was obtained without using the blocking DNA (unlabeled wheat genomic DNA). (4) Post-hybridization washes were carried out in 50% formamide (in 2 × SSC) or in 2 × SSC at different temperature. When the post-hybridization washing temperature were increased gradually from room temperature to 42℃ in 50% formamide (in 2 × SSC). specific in situ hybridization signals on chromosome in triticeae were observed using both biotinylated repetitive DNA and genomic DNA as probe. With the improved resolution of this protocol, in situ hybridization would be widely applied to wheat breeding and genetics researches.  相似文献   

4.
Electron microscope studies of blastulae of Pleurodeles waltlii Michah., treated with formamide (0,5 M for 17 hours), show various abnormalities concerning centrospheres, chromosomes and microtubules as well. At the prophase stage, the centrospheres may display at their outer region an accumulation of dense bodies, which shows a temporary blocking of these centrospheres. At metaphase the poles of pluripolar mitoses appear more or less separated from the material which contains the chromosomes of the equatorial region. Each of these poles contains an unique centriole and therefore it is considered as resulting of the subdivision of a normal anaphasic pole. Astral and spindle microtubules are very reduced in number and more or less shortened. The chromosomes are without any recognizable kinetochcre, they show various degrees of condensation. All these electron microscope observations confirm the light microscope ones, and we may conclude that formamide has a double action on microtubules formation and on the ultrastructure of chromosomes, the latter perhaps by a direct action on DNA protein complexes.  相似文献   

5.
This study shows that high variability and low recoveries are obtained when conventional ethanol precipitation is used to recover RNA from the 70%-90% formamide containing solutions that are used to elute poly(U) Sepharose columns. Precipitations of RNA at different formamide concentrations show that the variability of the recovery increases with increasing formamide concentration and the recovery decreases by 7% for each 10% increase in the formamide concentration. The formamide concentration curve shows that these factors can be optimized by diluting the formamide containing solutions at least to 30% formamide prior to the precipitation.  相似文献   

6.
The degree of chromosomal DNA (cDNA) denaturation and renaturation on polytene chromosomes has been measured by UV microspectrophotometry. Also DNA losses occurring upon denaturation have been quantified by Feulgen, gallocyanin-chromalum and UV. It has been observed that denaturation in alkali (0.07 N NaOH at room temperature) and formamide (90% formamide; 0.1 SSC, pH 7.2) at 65 °C removes about 30% of the DNA. Low DNA loss occurs upon denaturation in HCl (0.24 M) at room temperature and 60% formamide: 2 × 10?4 M EDTA (pH 8) at 55 °C. The presence of 4% formaldehyde in the denaturation buffer prevents DNA loss. After denaturation of chromosomes in 0.1 × SSC containing 4% formaldehyde at 100 °C for 30 sec, an hyperchromicity of 39 °C is observed. The denaturation efficiency varies with the denaturation treatment. The percentage reassociation was measured from the difference in the UV absorption of renatured chromosomes and that of denatured chromosomes from the same set. It seems that in our conditions DNA:DNA reassociation does not occur. The efficiency of hybridization is proportional to the denaturation extent of the DNA. However, the entire fraction of DNA which has been denatured is not available for hybridization.  相似文献   

7.
Denaturation of chromosomal DNA for fluorescence in situ hybridization (FISH) is an essential step in a procedure associated with a number of variables. In our experience, shorter denaturation time in 70% formamide/2 × SSC at 72 C provides sufficient denaturation, where the hydrogen bonds are broken between the purines and pyrimidines of the double helix. This shortened exposure improves retention of morphology of human chromosomes from lymphocytes, aminocytes, fibroblasts and bone marrow, and allows the same metaphases to be denatured repeatedly and rehybridized with different probes. This approach is useful in investigations where sample volume is limited.  相似文献   

8.
A novel method for the synthesis of cholesteryl ethers is described. The mesylates of fatty alcohols were treated with the sodium salt of cholesterol in toluene at 80 degrees C in the presence of anhydrous dimethyl formamide. The hexyl, tetradecyl, and oleyl cholesteryl ethers were synthesized in yields varying between 55 and 70%. Tritiated cholesteryl oleyl ether was also synthesized in good chemical (45%) and radiochemical (45%) yields.  相似文献   

9.
10.
RNA subunit structure of Mason-Pfizer monkey virus.   总被引:8,自引:7,他引:1       下载免费PDF全文
Mason-Pfizer monkey virus 60-70S RNA has a molecular weight of 8 times 10-6 when analyzed on polyacrylamide gels. Dissociation of 60-70S RNA of Mason-Pfizer monkey virus and murine leukemia virus by heat or formamide (40%) resulted in conversion to identical subunit structures of 2.8 times 10-6 daltons; treatment with lower amounts of formamide revealed a partial dissociation of Mason-Pfizer monkey virus 60-70S RNA released three low-molecular-weight RNA species of 10-5, 3,5 times 10-4, and 2.5 times 10-4.  相似文献   

11.
Denatured adenovirus DNA was retained by hydroxyapatite columns under conditions generally used for selective retention of double-stranded DNA, probably due to several partially complementary sequences within single-stranded DNA. It was found that addition of formamide reduced the fraction of sonically treated, denatured adenovirus DNA bound to hydroxyapatite from about 30% to less than 1%. This led to a study of the effect of formamide on the melting temperature (T(m)) of double-stranded DNA in solution or bound to hydroxyapatite. The T(m) of DNA decreases 0.56 C/1% formamide, a value determined in buffered solutions with purified formamide.  相似文献   

12.
The influence of different experimental conditions on in situ hybridization of DNA and subsequent differential staining of chromosomes was studied. The most optimal conditions for chromosomal localization of cloned repetitive DNA sequences were the lack of chromosome pretreatment with acid and RNase, reduction of the denaturation time to 30 s, carrying out of hybridization at a relatively low temperature (under 37 degrees C) at the expense of the use of formamide, addition to the hybridization mixture of 10% of dextran sulfate-500. The conditions indicated permit obtaining on radioautographs the G- and C-segmentation of human chromosomes.  相似文献   

13.
Because the ribonucleoprotein forms of the segments of the Uukuniemi virus genome have previously been characterized as circular, we examined the isolated RNAs by electron microscopy under conditions of increasing denaturation. After spreading under moderately denaturing conditions (50 or 60% formamide), 50 to 70% of the molecules were circular. Increasing the formamide concentration to 70 and 85% decreased the number of circular forms, and only linear forms were observed after incubation of the RNA at 60 degrees C for 15 min in 99% formamide. When spread from 4 M urea-80% formamide--another condition known to denature RNA--only 5 to 30% circular molecules were observed. Pretreatment of the RNA with 0.5 M glyoxal at 37 degrees C for 15 min prior to spreading from 50% formamide gave less than 5% cirucular forms. Length measurement of the molecules showed that they were not significantly degraded by any of the methods employed. The circular molecules were destroyed by treatment with pancreatic RNase, but were unaffected by DNase or proteinase K treatment. After complete denaturation of the RNA, the circles could be reformed under reannealing conditions. We conclude that the three size classes of RNA that comprise the Uukuniemi virus genome are circular molecules probably maintained in that form by base pairing between inverted complementary sequences at the 3'' and 5'' ends of linear molecules.  相似文献   

14.
BACKGROUND: Telomeres containing noncoding DNA repeats at the end of the chromosomes are essential for chromosomal stability and are implicated in regulating the replication and senescence of cells. The gradual loss of telomere repeats in cells has been linked to aging and tumor development and methods to measure telomere length are of increasing interest. At least three methods for measuring the length of telomere repeats have been described: Southern blot analysis and quantitative fluorescence in situ hybridization using either digital fluorescence microscopy (Q-FISH) or flow cytometry (flow-FISH). Both Southern blot analysis and Q-FISH have specific limitations and are time-consuming, whereas the flow-FISH technique requires relatively few cells (10(5)) and can be completed in a single day. A further advantage of the flow-FISH method is that data on the telomere length from individual cells and subsets of cells (lymphocytes and granulocytes) can be acquired from the same sample. In order to obtain accurate and reproducible results using the flow-FISH technique, we systematically explored the influence of various steps in the protocol on telomere length values and established an acceptable range for the most critical parameters. METHODS: Isolated leukocytes from whole blood are denatured by heat and 70%/75% formamide, then hybridized with or without a telomere-specific fluorescein isothiocyante (FITC)-conjugated peptide nucleic acid probe (PNA). Unbound telomere PNA is washed away, the DNA is counterstained, and telomere fluorescence is measured on a flow cytometer using an argon ion laser (488 nm) to excite FITC. For each sample, duplicates of telomere PNA-stained and unstained tubes are analyzed. RESULTS: Cell counts and flow-FISH telomere length measurements were performed on leukocytes and thymocytes of humans and other species. Leukocyte suspensions were prepared by two red blood cell lysis steps with ammonium chloride. Optimal denaturation of DNA was achieved by heating at 85-87 degrees C for 15 min in a solution containing 70%/75% formamide. Hybridization was performed at room temperature with a 0.3 microg/ml telomere-PNA probe for at least 60-90 min. Unbound telomere-PNA probe was diluted at least 4,000-40,000 times with wash steps containing 70%/75% formamide at room temperature. LDS 751 and DAPI were suitable as DNA counterstains as they did not show significant interference with telomere length measurement. CONCLUSIONS: The use of flow-FISH for telomere length measurements in nucleated blood cells requires tight adherence to an optimized protocol. The method described here can be used to determine rapidly the telomere length in subsets of nucleated blood cells.  相似文献   

15.
Differences in DNA composition along mammalian metaphase chromosomes   总被引:1,自引:1,他引:0  
Denaturation of chromosomal DNA in situ can be achieved without disruption of chromosomal morphology by heating slides at 25–90° C in 10–95% formamide in SSC. The extent of denaturation is proportional to formamide concentration and temperature. Reassociation of denatured DNA is prevented with formaldehyde. — The DNA in the paracentromeric constrictions in human chromosomes 1, 9 and 16 denatures earlier than in any other regions, as shown by the red colour with acridine orange. When the temperature or formamide concentration is raised a red and green banding pattern emerges in which regions known to stain brightly with quinacrine mustard are red whereas other regions are green. The last regions to turn red are the short arms of some acrocentric chromosomes. Since A+T-rich DNA denatures before G+C-rich DNA, it is inferred that QM-bright areas are rich in A+T. Similar results are obtained with mouse and Microtus agrestis cells. — Reassociation of chromosomal DNA denatured by heat and formamide occurs if no formaldehyde is used. In human cells, kinetic studies on reassociation indicate that the highest degree of repetition is in the DNA of the distal half of the Y chromosome. Next in degree of repetition are the paracentromeric constrictions, the short arm regions of some of the acrocentric chromosomes, and all the centromeric regions. Highly repetitious DNA is found in all mouse centromeric regions except that of the Y chromosome. Constitutively heterochromatic segments of X and Y and the autosomal centromeric regions of Microtus agrestis also contain repetitious DNA. — It is proposed that differential base content and susceptibility to denaturation of DNA contribute to or at least accompany Q-, G- and R-banding. The degree of C-banding is related to repetitious DNA. The human Y chromosomal DNA is probably A+T-rich and exceptionally repetitious, exhibiting spontaneous reassociation under many experimental conditions.  相似文献   

16.
以遗传性脊髓小脑共济失调Ⅱ型基因(spinocerebellar ataxia typeⅡgeneSCA2)编码区内的CAG三核苷酸重复为研究对象(G+C含量为69.2%),比较了热启动PCR、碱基替代PCR、添加增效剂(1%-12.5%二甲亚砜、1%-25%甘油、1%-12.5%甲酰胺)与常规PCR的扩增效率,发现热启动PCR、碱基替代PCR及添加增效剂(1%-10%二甲亚砜、5%-20%甘油、  相似文献   

17.
The effect of different denaturation and hybridization procedures on the efficiency of in situ 3H-cRNA hybridization with DNA in the polytene chromosomes of Drosophila hydei was investigated.Denaturation of the DNA in the squash preparations with 90% formamide in 0.1 × SSC at 65 °C for 2.5 h gave a significantly higher retention of radioactivity following in situ hybridization than did denaturation by 30 sec incubation in boiling 0.1 × SSC.A comparison of the effect of various SSC concentrations in the hybridization mixture revealed that among the SSC concentrations tested, 3 × SSC or 4 × SSC gave the highest efficiency of hybrid formation.Hybridization in 50% formamide at 20 °C resulted in continuing hybrid formation over a period of 3.5 h, the majority of the cRNA/DNA hybrids being formed within the first 10 min of the incubation period. The thermal dissociation profile of in situ cRNA/DNA hybrids formed in 50% formamide, 4 × SSC at 20 °C, as determined in 0.1 × SSC indicated a Tm of 66 °C. The shape of the profile and the results of competition experiments suggested a high fidelity of base-matching in the in situ 3H-cRNA/DNA hybrids.Non-chromosomal background labeling in autoradiographs of polytene chromosomes hybridized with 3H-cRNA was effectively reduced by adding a 200–1000 fold excess of cold 28S + 18S RNA.  相似文献   

18.
The location of highly reiterated nucleotide sequences on the chromosomes has been studied by the technique of in situ hybridisation between the DNA of either Drosophila melanogaster salivary gland chromosomes or mouse chromosomes and tritium labelled complementary RNA (c-RNA) transcribed in vitro from appropriate templates with the aid of DNA dependent RNA polymerase extracted from Micrococcus lysodeikticus. The location of the hybrid material was identified by autoradiography after RNase treatment. — When Drosophila c-RNA, transcribed from whole DNA, was annealed with homologous salivary chromosomes in the presence of formamide the well defined labelling was confined to the chromocentre. With heat instead of formamide denaturation there was evidence of discontinuous labelling in various chromosome regions as well, apparently associated with banding. Xenopus ribosomal RNA showed no evidence of annealing to Drosophila chromosomes with the comparatively short exposure times used here. — When mouse satellite DNA was used as template the resulting c-RNA showed no hybridisation to Drosophila chromosomes but, when annealed with mouse chromosomes, the centromeric regions were intensely labelled. The interphase nuclei showed several distinct regions of high activity which suggested aggregation of centromeric regions of both homologous and non-homologous chromosomes. The results of annealing either c-RNA or labelled satellite DNA to homologous chromosomes were virtually indistinguishable. Incubation of Drosophila c-RNA with mouse chromosomes provided no evidence of localisation of grains. — It is inferred that both in mouse and Drosophila the centromeric regions of all chromosomes are enriched in highly reiterated sequences. This may be a general phenomenon and it might be tentatively suggested that the highly reiterated sequences play some role in promoting the close physical approximation of homologous and non-homologous chromosomes or chromosome regions to facilitate regulation of function.  相似文献   

19.
Authors tried to induce G-bands of chromosomes of root-tips in maize (Zey mays L.. everty Sturt) with a variety of technological modifications. The following techniques were found to be more satisfactory: primary root-tips were treated with an aqueous actinomycin D(AMD) solution (70 μg/ml) at room temperature; air dry slides of chromosomes in maize made the chromosomes spread well and plasma off; and then the preparations of the chromosomes were treated with modified methods of Seabright[7] and Utakoji[8] and the technique of aceto-orcin stain. The G-bands of chromosomes of corn were induced with the three methods above. They were shown in Plate 1, 2, 3 and 4 which are similar to the G-bands of chromosomes in human and mammal, and these bands are more consistent in each chromosomes.  相似文献   

20.
A procedure is described for quinacrine banding of radiolabeled metaphase chromosomes for autoradiography. The chromosomes can be labeled either in vivo or by in situ hybridization. The banding procedure involves treating the slides with RNase and formamide and staining in quinacrine. The slides are then processed for autoradiography. After development of the photoemulsion, the chromosomes can be karyotyped with UV light by their fluorescent banding patterns and the silver grains overlaying the chromosomes can be demonstrated by the addition of tungsten light. It is possible by careful manipulation of the visible light to simultaneously observe both fluorescent bands and silver grains. This technique should significantly increase the accuracy of chromosome identification after autoradiography and decrease the time and effort required for such analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号