首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polo-box domain (PBD) of polo-like kinase 1 (Plk1) is essentially required for the function of Plk1 in cell proliferation. The availability of the phosphopeptide-binding pocket on PBD provides a unique opportunity to develop novel protein–protein interaction inhibitors. Recent identification of a minimal 5-residue-long phosphopeptide, PLHSpT, as a Plk1 PBD-specific ligand has led to the development of several peptide-based inhibitors, but none of them is cyclic peptide. Through the combination of single-peptoid mimics and thio-ether bridged cyclization, we successfully demonstrated for the first time two cyclic peptomers, PL-116 and PL-120, dramatically improved the binding affinity without losing mono-specificity against Plk1 PBD in comparison with the linear parental peptide, PLHSpT. These cyclic peptomers could serve as promising templates for future drug designs to inhibit Plk1 PBD.  相似文献   

2.
3.
Polo-like kinase 1 (Plk1) is an anti-cancer target due to its critical role in mitotic progression. A growing body of evidence has documented that Peptide-Plk1 inhibitors showed high Plk1 binding affinity. However, phosphopeptides-Plk1 inhibitors showed poor cell membranes permeability, which limits their clinical applications. In current study, nine candidate phosphopeptides consisting of non-natural amino acids were rationally designed and then successfully synthesized using an Fmoc-solid phase peptide synthesis (SPPS) strategy. Moreover, the binding affinities and selectivity were evaluated via fluorescence polarization (FP) assay. The results confirmed that the most promising phosphopeptide 6 bound to Plk1 PBD with the IC50 of 38.99?nM, which was approximately 600-fold selectivity over Plk3 PBD (IC50?=?25.44?μM) and nearly no binding to Plk2 PBD. Furthermore the intracellular activities and the cell membrane permeability of phosphopeptide 6 were evalutated. Phosphopeptide 6 demonstrated appropriate cell membrane permeability and arrested HeLa cells cycle in G2/M phase by regulating CyclinB1-CDK1. Further, phosphopeptide 6 showed typical apoptotic morphology and induced caspase-dependent apoptosis. In conclusion, we expect our discovery can provide new insights into the further optimization of Plk1 PBD inhibitors.  相似文献   

4.
Members of polo-like kinases (collectively, Plks) have been identified in various eukaryotic organisms and play pivotal roles in cell proliferation. They are characterized by the presence of a distinct region of homology in the C-terminal noncatalytic domain, called polo-box domain (PBD). Among them, Plk1 and its functional homologs in other organisms have been best characterized because of its strong association with tumorigenesis. Plk1 is overexpressed in a wide spectrum of cancers in humans, and is thought to be an attractive anti-cancer drug target. Plk1 offers, within one molecule, two functionally different drug targets with distinct properties-the N-terminal catalytic domain and the C-terminal PBD essential for targeting the catalytic activity of Plk1 to specific subcellular locations. In this review, we focused on discussing the recent development of small-molecule and phosphopeptide inhibitors for their potency and specificity against Plk1. Our effort in understanding the binding mode of various inhibitors to Plk1 PBD are also presented.  相似文献   

5.
Polo-like kinases (Plks) perform crucial functions in cell-cycle progression and multiple stages of mitosis. Plks are characterized by a C-terminal noncatalytic region containing two tandem Polo boxes, termed the Polo-box domain (PBD), which has recently been implicated in phosphodependent substrate targeting. We show that the PBDs of human, Xenopus, and yeast Plks all recognize similar phosphoserine/threonine-containing motifs. The 1.9 A X-ray structure of a human Plk1 PBD-phosphopeptide complex shows that the Polo boxes each comprise beta6alpha structures that associate to form a 12-stranded beta sandwich domain. The phosphopeptide binds along a conserved, positively charged cleft located at the edge of the Polo-box interface. Mutations that specifically disrupt phosphodependent interactions abolish cell-cycle-dependent localization and provide compelling phenotypic evidence that PBD-phospholigand binding is necessary for proper mitotic progression. In addition, phosphopeptide binding to the PBD stimulates kinase activity in full-length Plk1, suggesting a conformational switching mechanism for Plk regulation and a dual functionality for the PBD.  相似文献   

6.
Polo-like kinase (Plk) plays a central role in centrosome cycle and is closely associated with the oncogenesis of lung cancer. The protein consists of a catalytic kinase domain (KD) and a regulatory polo-box domain (PBD); either direct inhibition of the KD’s catalytic activity or indirect disruption of the PBD–substrate interaction can be used to potentially suppress the pathological activation of lung cancer Plk. Here, we reported a successful molecular design and engineering of phosphopeptide ligands to target Plk PBD domain by integrating in silico modeling and in vitro assay. In the procedure, a helical peptide segment hps was derived from dimerization interface of the complex crystal structure of domain dimer using bioinformatics approach, which was then used as sequence template to generate potent phosphopeptide binders of Plk PBD domain in terms of a systematic residue mutation profile. Fluorescence anisotropy assays were conducted to substantiate the findings and conclusions obtaining from the molecular engineering. Consequently, three helical phosphopeptides, including the native hps and its two mutants hps-m 1 and hps-m 2, were successfully designed that can independently rebind to Plk PBD domain with a moderate or high affinity (K d = 127, 26, and 5 μM, respectively). These peptide ligands can be considered as potent self-competitors to disrupt PBD dimerization in lung cancer metastasis. Structural and energetic analysis revealed that hydrophobic forces and van der Waals contacts confer strong stability for domain–peptide complex system, while hydrogen bonds and electrostatic interactions contribute specificity and selectivity to the complex recognition.  相似文献   

7.
Polo-like kinase 1 (Plk1) plays a critical role in proper M-phase progression and cell proliferation. Plk1 is overexpressed in a broad spectrum of human cancers and is considered an attractive anticancer drug target. Although a large number of inhibitors targeting the catalytic domain of Plk1 have been developed, these inhibitors commonly exhibit a substantial level of cross-reactivity with other structurally related kinases, thus narrowing their applicable dose for patient treatment. Plk1 contains a C-terminal polo-box domain (PBD) that is essentially required for interacting with its binding targets. However, largely due to the lack of both specific and membrane-permeable inhibitors, whether PBD serves as an alternative target for the development of anticancer therapeutics has not been rigorously examined. Here, we used an intracellularly expressed 29-mer-long PBIP1-derived peptide (i.e., PBIPtide), which can be converted into a “suicidal” PBD inhibitor via Plk1-dependent self-priming and binding. Using this highly specific and potent system, we showed that Plk1 PBD inhibition alone is sufficient for inducing mitotic arrest and apoptotic cell death in cancer cells but not in normal cells, and that cancer cell–selective killing can occur regardless of the presence or absence of oncogenic RAS mutation. Intriguingly, PBD inhibition also effectively prevented anchorage-independent growth of malignant cancer cells. Thus, targeting PBD represents an appealing strategy for anti-Plk1 inhibitor development. Additionally, PBD inhibition–induced cancer cell–selective killing may not simply stem from activated RAS alone but, rather, from multiple altered biochemical and physiological mechanisms, which may have collectively contributed to Plk1 addiction in cancer cells.  相似文献   

8.
Johnson TM  Antrobus R  Johnson LN 《Biochemistry》2008,47(12):3688-3696
The mitotic protein kinase Plk1 catalyzes events associated with centrosome maturation, kinetocore function, spindle formation, and cytokinesis and is a target for anticancer drug design. It is composed of a N-terminal kinase domain and a C-terminal polo-box domain (PBD). The PBD domain serves to localize the kinase on cognate phosphorylated substrates, and this binding relieves the inhibition of the kinase by the PBD. Similar to many protein kinases, Plk1 is activated by phosphorylation on a threonine residue, Thr210, in the activation segment. In this work, we describe expression in Escherichia coli cells and purification of full-length Plk1 in quantities suitable for structural studies and use this material for quantitative characterization of the activation events with the substrate translationally controlled tumour protein (TCTP). The presence of the PBD-binding phosphopeptide enhances phosphorylation by the activating Ste20-like kinase (Slk). Native Plk1 exhibits a basal catalytic efficiency k cat/ K(M) of 9.9 x 10 (-5) s (-1) microM (-1). Association with a polo-box-binding phosphopeptide increased the catalytic efficiency by 11x largely through an increase in k(cat) with no change in K(M). Phosphorylation by Slk increases catalytic efficiency by 202x with a 2.3-fold reduction in K(M) and 88-fold increase in k(cat). Phosphorylation and the presence of the PBD-binding phosphopeptide result in an increase in catalytic efficiency of 1515x with a 2.3-fold decrease in K(M) and a 705-fold increase in k(cat) over the unmodified Plk1. Knowledge of kinase regulatory mechanisms and the structures of the Plk1 individual domains has allowed for a model to be proposed for these activatory events.  相似文献   

9.
Polo-like kinase 1 (Plk1) is elementary for cell proliferation and its deregulation is involved in tumorigenesis. Plk1 has been established as one of the most attractive targets for molecular cancer therapy. In fact, multiple small molecule inhibitors targeting either the kinase domain or the Polo-box binding domain (PBD) of Plk1 have been identified and intensively investigated. Intriguingly, Plk1 depletion affects more cancer cells than normal cells. It is also reported that the cytotoxicity induced by Plk1 inhibition is elevated in cancer cells with defective p53. The data lead to the hypothesis that p53 might be a predictive marker for the response of Plk1 inhibition. In this study, we demonstrate that there is no obvious different cytotoxic response between cancer cells with and without functional p53, including the isogenic colon cancer cell lines HCT116p53(+/+) and HCT116p53(-/-), breast cancer cell line MCF7, lung cancer cell line A549 and cervical carcinoma cell line HeLa, after treatment with either siRNA against Plk1, the kinase domain inhibitors BI 2536 and BI 6727 or the PBD inhibitor Poloxin. We suggest that the p53 status is not a predictor for the response of Plk1 inhibition, at least not directly. Yet, the long-term outcomes of losing p53, such as genome instability, could be associated with the cytotoxicity of Plk1 inhibition. Further studies are required to investigate whether other circumstances of cancer cells, such as DNA replication/damage stress, mitotic stress, and metabolic stress, which make possibly the survival of cancer cells more dependent on Plk1 function, are responsible for the sensitivity of Plk1 inhibition.  相似文献   

10.
The serine/threonine kinase polo-like kinase 1 (Plk1) is critically involved in multiple mitotic processes and has been established as an adverse prognostic marker for tumor patients. Plk1 localizes to its substrates and its intracellular anchoring sites via its polo-box domain (PBD), which is unique to the family of polo-like kinases. Therefore, inhibition of the Plk1 PBD has been suggested as an approach to the inhibition of Plk1 that circumvents specificity problems associated with the inhibition of the conserved adenosine triphosphate (ATP) binding pocket. Here we report on the development of a high-throughput assay based on fluorescence polarization that allows the discovery of small-molecule inhibitors of the Plk1 PBD. The assay is based on binding of the Plk1 PBD to a phosphothreonine-containing peptide comprising its optimal binding motif with a Kd of 26 ± 2 nM. It is stable with regard to dimethyl sulfoxide (DMSO) and time, and it has a Z′ value of 0.73 ± 0.06 in a 384-well format.  相似文献   

11.
A series of non-peptide inhibitors targeting the polo-box domain (PBD) of polo-like kinase 1 (Plk1) was designed based on the potent and selective minimal tripeptide Plk1 PBD inhibitor. Seven compounds were designed, synthesized and evaluated for fluorescence polarization (FP) assay. The most promising compound 10 bound to Plk1 PBD with IC50 of 3.37 μM and had no binding to Plk2 PBD or Plk3 PBD at 100 μM. Molecular docking study was performed and possible binding mode was proposed. MM/GBSA binding free energy calculation were in agreement with the observed experimental results. These novel non-peptide selective Plk1 PBD inhibitors provided new lead compounds for further optimization.  相似文献   

12.
Kyung S. Lee  Seung Jun Kim 《Proteins》2015,83(7):1201-1208
Polo‐like kinases (Plks) are the key regulators of cell cycle progression, the members of which share a kinase domain and a polo‐box domain (PBD) that serves as a protein‐binding module. While Plk1 is a promising target for antitumor therapy, Plk2 is regarded as a tumor suppressor even though the two Plks commonly recognize the S‐pS/T‐P motif through their PBD. Herein, we report the crystal structure of the PBD of Plk2 at 2.7 Å. Despite the overall structural similarity with that of Plk1 reflecting their high sequence homology, the crystal structure also contains its own features including the highly ordered loop connecting two subdomains and the absence of 310‐helices in the N‐terminal region unlike the PBD of Plk1. Based on the three‐dimensional structure, we furthermore could model its interaction with two types of phosphopeptides, one of which was previously screened as the optimal peptide for the PBD of Plk2. Proteins 2015; 83:1201–1208. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
The serine/threonine kinases Plk1, Plk2, and Plk3 harbor a protein–protein interaction domain dubbed polo-box domain (PBD). Recently, the inhibition of the PBD of the cancer target Plk1 has been successfully explored as an alternative to the inhibition of the kinase by ATP-competitive ligands. However, because the PBDs of Plk1, Plk2, and Plk3 have very similar optimal binding motifs, absolute specificity for the PBD of Plk1 over the PBDs of Plk2 and Plk3 may also represent a big challenge for a small molecule. To aid in the activity profiling of Plk PBD inhibitors, and to identify selective small molecules that will reveal the cellular consequences of inhibiting the PBDs of Plk2 and Plk3, we have developed high-throughput assays based on fluorescence polarization against the PBDs of Plk2 and Plk3. The assays are stable with regard to time and 10% dimethyl sulfoxide and have Z′ values 0.7, making them well-suited for high-throughput screening. Moreover, our data provide insights into the binding preferences of the PBDs of Plk2 and Plk3.  相似文献   

14.
In an effort to develop improved binding antagonists of the polo-like kinase 1 (Plk1) polo-box domain (PBD), we optimized interactions of the known high affinity 5-mer peptide PLHSpT using oxime-based post solid-phase peptide diversification of the N-terminal Pro residue. This allowed us to achieve up to two orders of magnitude potency enhancement. An X-ray crystal structure of the highest affinity analogue in complex with Plk1 PBD revealed new binding interactions in a hydrophobic channel that had been occluded in X-ray structures of the unliganded protein. This study represents an important example where amino acid modification by post solid-phase oxime ligation can facilitate the development of protein-protein interaction inhibitors by identifying new binding pockets that would not otherwise be accessible to coded amino acid residues.  相似文献   

15.
A series of d-amino acid-containing peptidomimetics were designed, synthesized as novel polo-like kinase 1 (Plk1) polo-box domain (PBD) inhibitors based on the reported peptide Plk1 PBD inhibitor. Their inhibitory activity to Plk1, Plk2, and Plk3 PBD were evaluated using our fluorescence polarization (FP) assay. Compound 18 bound to Plk1 PBD with IC50 of 0.80 μM and showed nearly no inhibition to Plk2 PBD or Plk3 PBD at 100 μM. Compound 18 induced Hela cells to undergo apoptosis by increasing the ratio of the cells at the G2/M phase by decreasing the neosynthesized proteins in a dose-dependent manner from 50 to 150 μM. Compound 18 showed improved stability in rat plasma compared to l-peptide inhibitor LHSpTA. These novel d-amino acid modified selective Plk1 PBD inhibitors may provide new lead compounds for further optimization.  相似文献   

16.
For almost a decade, there has been much interest in the development of chemical inhibitors of Polo-like kinase 1 (Plk1) protein interactions. Plk1 is a master regulator of the cell division cycle that controls numerous substrates. It is a promising target for cancer drug development. Inhibitors of the kinase domain of Plk1 had some success in clinical trials. However, they are not perfectly selective. In principle, Plk1 can also be inhibited by interfering with its protein interaction domain, the Polo-Box Domain (PBD). Selective chemical inhibitors of the PBD would constitute tools to probe for PBD-dependent functions of Plk1 and could be advantageous in cancer therapy. The discovery of Poloxin and thymoquinone as PBD inhibitors indicated that small, cell-permeable chemical inhibitors could be identified. Other efforts followed, including ours, reporting additional molecules capable of blocking the PBD. It is now clear that, unfortunately, most of these compounds are non-specific protein alkylators (defined here as groups covalently added via a carbon) that have little or no potential for the development of real Plk1 PBD-specific drugs. This situation should be minded by biologists potentially interested in using these compounds to study Plk1. Further efforts are needed to develop selective, cell-permeable PBD inhibitors.  相似文献   

17.
Polo-box domains confer target specificity to the Polo-like kinase family   总被引:1,自引:0,他引:1  
Polo-like kinases (Plks) contain a conserved Polo-box domain, shown to bind to phosphorylated Ser-pSer/pThr-Pro motifs. The Polo-box domain of Plk-1 mediates substrate interaction and plays an important role in subcellular localization. Intriguingly, the major interactions between the PBD and the optimal recognition peptide are mediated by highly conserved residues in the PBD, suggesting there is little target specificity conveyed by the various PBDs. However, here we show that the affinity of the purified Plk1-3 PBDs to both a physiological Cdc25C derived phospho-peptide and an optimal recognition phospho-peptide differs significantly among family members. To decipher the role of the PBDs and kinase domains in inferring Plk specificity, we exchanged the PBD of Plk1 (PBD1) with the PBD of Plk2, 3, or 4 (PBD2-4). The resulting hybrid proteins can restore bipolar spindle formation and centrosome maturation in Plk1-depleted U2OS cells to various degrees. In these experiments PBD2 was most efficient in complementing PBD-function. Using the MPM2 antibody that recognizes a large set of mitotic phospho-proteins, we could show that PBD1 and PBD2 display some limited overlap in target recognition. Thus, PBDs convey a significant deal of target specificity, indicating that there is only a limited amount of functional redundancy possible within the Plk family.  相似文献   

18.
Mammalian polo-like kinase 1 (Plk1) has been studied intensively as a key element in regulating diverse mitotic events during M-phase progression. Plk1 is spatially regulated through the targeting activity of the conserved polo-box domain (PBD) present in the C-terminal non-catalytic region. Over the years, studies have demonstrated that the PBD forms a phospho-epitope binding module and the PBD-dependent interaction is critical for proper subcellular localization of Plk1. The current prevailing model is that the PBD binds to a phospho-epitope generated by Cdc2 or other Pro-directed kinases. Here we discuss a recent finding that Plk1 also self-promotes its localization by generating its own PBD-docking site.  相似文献   

19.
A series of new peptidomimetics targeting the polo-box domain (PBD) of polo-like kinase 1 (Plk1) was identified based on the potent and selective pentapeptide Plk1 PBD inhibitor PLHSpT. Unnatural amino acid residues were introduced to the newly designed compound and the N-terminal substituent of the peptidomimetic was investigated. The optimized compound 9 inhibited the Plk1 PBD with IC50 of 0.267 μM and showed almost no inhibition to Plk2 PBD or Plk3 PBD at 100 μM. Biolayer interferometry studies demonstrated that compound 9 showed potent binding affinity to Plk1 with a Kd value of 0.164 μM, while no Kd were detected against Plk2 and Plk3. Compound 9 showed improved stability in rat plasma compared to PLHSpT. Binding mode analysis was performed and in agreement with the observed experimental results. There are only two natural amino acids remained in the chemical structure of 9. This study may provide new information for further research on Plk1 PBD inhibitors.  相似文献   

20.
The polo-box domain (PBD) of mammalian polo-like kinase 1 (Plk1) is essential in targeting its catalytic activity to specific subcellular structures critical for mitosis. The mechanism underlying Plk1 recruitment to the kinetochores and the role of Plk1 at this site remain elusive. Here, we demonstrate that a PBD-binding protein, PBIP1, is crucial for recruiting Plk1 to the interphase and mitotic kinetochores. Unprecedentedly, Plk1 phosphorylated PBIP1 at T78, creating a self-tethering site that specifically interacted with the PBD of Plk1, but not Plk2 or Plk3. Later in mitosis, Plk1 also induced PBIP1 degradation in a T78-dependent manner, thereby enabling itself to interact with other components critical for proper kinetochore functions. Absence of the p-T78-dependent Plk1 localization induced a chromosome congression defect and compromised the spindle checkpoint, ultimately leading to aneuploidy. Thus, Plk1 self-regulates the Plk1-PBIP1 interaction to timely localize to the kinetochores and promote proper chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号