首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determinedthe role of the multidrug resistance (MDR1) gene product,P-glycoprotein (PGP), in the secretion of aldosterone by the adrenalcell line NCI-H295. Aldosterone secretion is significantly decreased bythe PGP inhibitors verapamil, cyclosporin A (CSA), PSC-833, andvinblastine. Aldosterone inhibits the efflux of the PGP substraterhodamine 123 from NCI-H295 cells and from human mesangial cells(expressing PGP). CSA, verapamil, and the monoclonal antibody UIC2significantly decreased the efflux of fluorescein-labeled (FL)-aldosterone microinjected into NCI-H295 cells. In MCF-7/VP cells,expressing multidrug resistance-associated protein (MRP) but not PGP,and in the parental cell line MCF7 (expressing no MRP andno PGP), the efflux of microinjected FL-aldosterone was slow. In BC19/3cells (MCF7 cells transfected with MDR1), the efflux of FL-aldosteronewas rapid and it was inhibited by verapamil, indicating thattransfection with MDR1 cDNA confers the ability to transportFL-aldosterone. These results strongly indicate that PGP plays a rolein the secretion of aldosterone by NCI-H295 cells and in other cellsexpressing MDR1, including normal adrenal cells.

  相似文献   

2.
3.
4.
5.
Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity.  相似文献   

6.
Inhibitory effects of flavonoid phytochemicals, flavones, flavonols and isoflavones on cortisol production were examined in human adrenal H295R cells stimulated with di-buthylyl cAMP. In addition, the inhibitory effects of these chemicals on the activity of P450scc, 3beta-HSD type II (3beta-HSD II), P450c17, P450c21 and P45011beta, steroidogenic enzymes involved in cortisol biosynthesis, were examined in the same cells. Exposure to 12.5 microM of the flavonoids 6-hydroxyflavone, 4'-hydroxyflavone, apigenin, daidzein, genistein and formononetin significantly decreased cortisol production (by 6.3, 69.6, 47.5, 26.6, 13.8 and 11.3%, respectively), and biochanin A significantly decreased cortisol production (by 47.3%) at a concentration of 25 microM without any significant cytotoxic effects or changes in cell number. Daidzin, the 7-glucoside of daidzein, did not alter cortisol production by H295R cells at concentrations over 10 microg/ml (24 microM). Daidzein-induced reduction of cortisol production by H295R cells was not inhibited by the estrogen receptor antagonist ICI 182,780. The flavonoids 6-hydroxyflavone, daidzein, genistein, biochanin A and formononetin strongly and significantly inhibited microsomal 3beta-HSD II activity at concentrations from 1 to 25 microM, and I(50) values were estimated to be 1.3, 2, 1, 0.5 and 2.7 microM, respectively. In addition, these flavonoids significantly inhibited microsomal P450c21 activity at 12.5 and/or 25 microM. In addition, 6-hydroxyflavone inhibited activity of microsomal P450c17 and mitochondrial P45011beta at 12.5 and/or 25 microM. Results of Lineweaver-Burk's plot analysis indicate that daidzein is a competitive inhibitor of the activity of 3beta-HSD II and P450c21. K(m) and V(max) values of 3beta-HSD II for DHEA were estimated to be 6.6 microM and 328pmol/minmg protein, respectively. K(m) and V(max) values of P450c21 for progesterone were estimated to be 2.8 microM and 16pmol/minmg protein, respectively. K(i) values of 3beta-HSD II and P450c21 for daidzein were estimated to be 2.9 and 33.3 microM, respectively.  相似文献   

7.
8.
9.
10.
It has been increasingly appreciated that aldosterone elicits acute vascular effects through nongenomic signaling pathways. Our previous studies demonstrated that aldosterone attenuated phenylephrine-mediated constriction in intact vessels [via phosphatidylinositol 3-kinase-dependent nitric oxide synthase activation] but enhanced vasoconstrictor responses in endothelium-denuded arteries. To determine the mechanism of this vasoconstrictor response, we assessed the effect of aldosterone on myosin light-chain phosphorylation and contraction in clonal adult human vascular smooth muscle cells. Acute aldosterone exposure mediated dose-dependent myosin light-chain phosphorylation, inhibited by spironolactone and phosphatidylinositol 3-kinase inhibition. These rapid effects of aldosterone were mimicked by estradiol and hydrocortisone and were also inhibitable by both spironolactone and eplerenone. In parallel to its effects on myosin light-chain phosphorylation, aldosterone mediated dose-dependent contraction responses that were inhibited by spironolactone. Comparable contractile responses were seen with both 17-estradiol and hydrocortisone. In total, these data are consistent with a mechanism of acute aldosterone-mediated contraction common to both glucocorticoids and estrogen. Steroid-mediated vasoconstriction may represent an important pathobiological mechanism of vascular disease, especially in the setting of preexisting endothelial dysfunction. steroid hormones; contraction; nongenomic  相似文献   

11.
12.
13.
Multiple effects of ouabain on BHK cells   总被引:2,自引:0,他引:2  
  相似文献   

14.
Pretreatment of human lymphocytes for 2 days in 2 X 10(-6)M ouabain caused irreversible loss of their subsequent capacity to stimulate in the mixed lymphocyte reaction (MLR). Pretreatment for the same period with 10(-7)M ouabain resulted in an enhanced incorporation of thymidine into DNA of the responding cells in the MLR; this effect was also on the stimulating cells, as previously reported by Christen et al. (Cell, Immunol. 19, 137-142 (1975)). Pretreatment of stimulating lymphocytes with 10(-7)M ouabain caused a persistent but reversible inhibition of the synthesis of RNA and protein in the MLR; peak incorporation of labelled uridine or alanine reached the same level as that of the control cultures, but 24 h later. Exactly the same persistent but reversible inhibition was found in the case of DNA syntheis of cells pretreated with 10(-7)M ouabain and then stimulated by antigens (streptolysin-O and varidase) or by mitogens (phytohemagglutinin and concanavalin A); the same level of incorporation of labelled thymidine occurred but 24-48 h later than in the case of the controls. Pretreatment with the cardiotonic steroid under these conditions also resulted in a pronounced inhibition of the basal, unstimulated levels of RNA and protein synthesis in the case of both control lymphocytes and those which had been treated with mitomycin C. The effects of ouabain pretreatment on basal RNA and protein synthesis were identical for both 2 X 10(-6)M and for 10(-7)M; the effect of pretreatment of stimulating cells with these two concentrations was completely opposite: irreversible inhibition of the proliferative response of allogeneic responding cells at the former concentration and delayed activation at the latter.  相似文献   

15.
The synthesis of adrenodoxin, a mitochondrial iron-sulfur protein required for adrenocortical steroidogenesis, is known to be regulated chronically by ACTH. Rhodanese, also a mitochondrial enzyme, is thought to be required for synthesis of iron-sulfur centers, such as those contained in adrenodoxin. In this study it has been found that rhodanese synthesis and activity are not regulated by ACTH, under the same conditions whereby ACTH induces adrenodoxin synthesis. In addition, unlike adrenodoxin, rhodanese is found to be synthesized in the mature form rather than as a higher molecular weight precursor protein.  相似文献   

16.
17.
Aldosterone production occurs in the outer area of the adrenal cortex, the zona glomerulosa. The glucocortocoids cortisol and corticosterone, depending upon the species, are synthesized in the inner cortex, the zona fasciculata. Calf zona glomerulosa cells rapidly lose the ability to synthesize aldosterone when placed in primary culture unless they are incubated in the presence of the antioxidants butylated hydroxyanisol and selenous acid, the radioprotectant DMSO, and the cytochrome P-450 inhibitor metyrapone. In the presence of these additives, calf zona fasciculata cells in primary culture synthesize aldosterone at rates which can approach those from cells isolated from the zona glomerulosa. Calf zona glomerulosa and fasciculata cells both responded well to ACTH and angiotensin II, but the zona fasciculata cells respond very poorly compared to glomerulosa cells to increased potassium in the media. Rat zona fasciculata cells in primary culture under similar conditions did not synthesize aldesterone, suggesting that the regulation of the expression of the enzymes responsible for the biosynthesis of aldosterone in the two species is different. Two distinct cytochrome P-450 cDNAs which hydroxylate deoxycorticosterone at the 11β position have been described in the rat, human and mouse. Both cytochrome P-450 cDNAs have been cloned and expressed in non-steroidogenic cells, but only one is expressed in the zona glomerulosa and only this glomerulosa cytochrome P450 can further hydroxylate deoxycorticosterone to generate aldosterone. Two bovine adrenal cDNAs have been described with 11β-hydroxylase activity and their expression products in transiently transfected COS cells can convert deoxycorticosterone into aldosterone. Both enzymes are expressed in all zones of the adrenal cortex. Zonal regulation of aldosterone synthesis in the bovine adrenal gland may be due to an 11β-hydroxylase with aldosterone synthesizing capacity which has not yet been isolated. Alternatively, a single enzyme might be responsible for the several hydroxylations in the pathway between deoxycorticosterone and aldosterone and zonal synthesis might be controlled by unknown factors regulating the expression of C-18 hydroxylation. The incubation of zona fasciculata with antioxidants and metyrapone results in atypical expression of this activity by an unclear mechanism.  相似文献   

18.
Dispersed chicken adrenocortical cells were preincubated with atrial natriuretic peptide (rANP), sodium nitroprusside (SNP) or 8-bromo cyclic GMP, followed by incubations with ACTH, chicken PTH, cholera toxin or various steroid intermediates of aldosterone production. Cyclic AMP production and aldosterone secretion were evaluated, in order to determine the sites of ANP inhibition in the sequence of events leading to aldosterone secretion. Dose-dependent inhibitory effects on ACTH-stimulated aldosterone secretion by rANP and SNP were observed. Both agents appeared to stimulate cGMP production by the particulate fraction of the avian adrenocortical cells. Aldosterone production, stimulated by cyclic AMP agonists such as ACTH, chicken PTH and cholera toxin, was significantly inhibited by ANP. On the other hand, ANP did not interfere with production or degradation of cAMP. Each of the aldosterone intermediates--pregnenolone, progesterone, 11-deoxycorticosterone and corticosterone--promoted aldosterone production when included in the incubation media. Atrial natriuretic peptide and SNP inhibited aldosterone secretion when enhanced by the intermediates, by about 40-60%, but the ACTH-stimulated secretion was inhibited by over 90%. The results suggest two sites of inhibition by ANP in the pathway of aldosterone synthesis and secretion: synthesis of cholesterol or pregnenolone, and conversion of corticosterone to aldosterone. The inhibition by 8-bromo cGMP of aldosterone secretion and the similar sites of inhibition for ANP and SNP suggest that cyclic GMP mediates the inhibition in both cases.  相似文献   

19.
The biosynthesis of prostaglandins by isolated rat adrenocortical cells has been studied by determinations of products formed during incubations with labeled arachidonic acid and by radioimmunoassays. Analysis by thin-layer chromatographic separation of silicic acid column fractions indicated that PGE2, PGA2, (B2) and PGF2 alpha were the predominant prostaglandins formed by rat adrenocortical cells. Approximately 75% of the incorporated isotope was associated with the prostaglandins of the PGE pathway [PGE2 + PGA2 (B2)]. This was a consistent finding whether cells were incubated directly with arachidonic acid or with cells prelabeled with the substrate prior to study. ACTH did not affect the uptake or oxidation of [1-14C]-arachidonate, but did significantly increase incorporation of labeled substrate into [14C]prostaglandins. Of the ACTH-induced increase, 92% was accounted for by an increase in prostaglandins of the E pathway. Studies with prelabeled cells indicated that 77% of the prostaglandins synthesized in both control and ACTH-stimulated adrenocortical cells was released into the incubation medium during the 2-hr study. These had the same composition [88% PGE2 + PGA2 (B2)] as did the intracellular prostaglandins. Analysis by radioimmunoassays gave comparable data on the distribution of E- and F-type prostaglandins in control cells and cells incubated with ACTH or dibutyryl cyclic AMP. Thus, with these techniques, 88-92% of the increased prostaglandin synthesis due to ACTH or cyclic AMP was produced by the PGE2 rather than the PGF2 alpha pathway.  相似文献   

20.
Aldosterone plays a key role in salt and water homeostasis but is also involved in the development and progression of congestive heart failure and myocardial fibrosis. As a new pharmacological strategy for the treatment of these diseases, we propose the inhibition of the key enzyme of mineralcorticoid formation, CYP11B2 (aldosterone synthase). For studies of the effects of CYP11B2 inhibitors on the adrenal cortex, we selected the NCI-H295R cell line which expresses most of the key enzymes necessary for steroidogenesis. To evaluate this cell line as a test system for effects and side effects of CYP inhibitors, we established assays using radiolabeled substrates of CYP11B2 and CYP11B1 and subsequently tested a series of CYP11B2 inhibitors including the CYP19 inhibitor fadrozole. Fadrozole and compounds 6, 9 and 10 were more potent towards CYP11B2 compared to CYP11B1 with IC(50) values in the nanomolar range. To analyze their overall effect, the formation of steroids in the cell culture supernatant was monitored. All compounds led to a concentration-dependent reduction of the aldosterone secretion but also reduced the formation of cortisol and androgens. In conclusion, the H295R cell line is a suitable tool for the prediction of overall side effects of CYP11B2 inhibitors on steroidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号