首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The prototypic hypovirus CHV1-EP713 attenuates virulence (hypovirulence) and alters several physiological processes of the chestnut blight fungus Cryphonectria parasitica. The papain-like protease, p29, and the highly basic protein, p40, derived, respectively, from the N-terminal and C-terminal portions of the CHV1-EP713-encoded open reading frame (ORF) A polyprotein, p69, both contribute to reduced pigmentation and sporulation. The p29 coding region was shown to suppress pigmentation and asexual sporulation in the absence of virus infection in transformed C. parasitica, whereas transformants containing the p40-coding domain exhibited a wild-type, untransformed phenotype. Deletion of either p29 or p40 from the viral genome also results in reduced accumulation of viral RNA. We now show that p29, but not p40, functions in trans to enhance genomic RNA accumulation and vertical transmission of p29 deletion mutant viruses. The frequency of virus transmission through conidia was found to decrease with reduced accumulation of viral genomic double-stranded RNA (dsRNA): from almost 100% for wild-type virus to approximately 50% for Deltap29, and 10 to 20% for Deltap69. When expressed from a chromosomally integrated cDNA copy, p29 elevated viral dsRNA accumulation and transmission for Deltap29 mutant virus to the level shown by wild-type virus. Increased viral RNA accumulation levels were also observed for a Deltap69 mutant lacking almost the entire ORF A sequence. Such enhancements were not detected in transgenic fungal colonies expressing p40. Mutation of p29 residues Cys(70) or Cys(72), strictly conserved in hypovirus p29 and potyvirus HC-Pro, resulted in the loss of both p29-mediated suppressive activity in virus-free transgenic C. parasitica and in trans enhancement of RNA accumulation and transmission, suggesting a linkage between these functional activities. These results suggest that p29 is an enhancer of viral dsRNA accumulation and vertical virus transmission through asexual spores.  相似文献   

2.
Suzuki N  Nuss DL 《Journal of virology》2002,76(15):7747-7759
The papain-like protease p29, derived from the N-terminal portion of the hypovirus CHV1-EP713-encoded open reading frame (ORF) A polyprotein, p69, was previously shown to contribute to reduced pigmentation and sporulation by the infected host, the chestnut blight fungus Cryphonectria parasitica, while being dispensable for virus replication and attenuation of fungal virulence (hypovirulence). We now report that deletion of the C-terminal portion of p69, which encodes the highly basic protein p40, resulted in replication-competent mutant viruses that were, however, significantly reduced in RNA accumulation. While the Delta p40 mutants retained the ability to confer hypovirulence, Delta p40-infected fungal strains produced more asexual spores than strains infected with either wild-type CHV1-EP713 or a Delta p29 mutant virus. As observed for Delta p29-infected colonies, pigment production was significantly increased in Delta p40-infected fungal strains relative to that in CHV1-EP713-infected strains. Virus-mediated suppression of laccase production was not affected by p40 deletion. A gain-of-function analysis was employed to map the p40 symptom determinant to the N-terminal domain, encompassing p69 amino acid residues Thr(288) to Arg(312). Evidence that the gain of function was due to the encoded protein rather than the corresponding RNA sequence element was provided by introducing frameshift mutations on either side of the activity determinant domain. Moreover, restoration of symptoms correlated with increased accumulation of viral RNA. These results suggest that p40 indirectly contributes to virus-mediated suppression of fungal pigmentation and conidiation by providing an accessory function in hypovirus RNA amplification. A possible role for p40 in facilitating ORF B expression and the relationship between hypovirus RNA accumulation and symptom expression are discussed.  相似文献   

3.
Viral double-stranded RNAs (dsRNAs) responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica, profoundly influence a range of host functions in addition to virulence. The 5'-proximal open reading frame, A, of the prototypical hypovirulence-associated viral dsRNA, L-dsRNA, present in hypovirulent strain EP713, was recently shown by DNA-mediated transformation analysis to suppress fungal sporulation, pigmentation, and accumulation of the enzyme laccase (G. H. Choi and D. L. Nuss, EMBO J. 11:473-477, 1992). We mapped this suppressive activity to the autocatalytic papain-like protease, p29, present within the amino-terminal portion of open reading frame A-encoded polyprotein p69. Mutational analysis revealed that the ability of p29 to alter fungal phenotype is dependent upon release from the polyprotein precursor but is independent of intrinsic proteolytic activity. Deletion of the p29-coding domain within the context of an infectious L-dsRNA cDNA clone resulted in a replication-competent viral dsRNA that exhibited intermediate suppressive activity while retaining the ability to confer hypovirulence. Thus, p29 is necessary but not sufficient for the level of virus-mediated suppression of fungal pigmentation, sporulation, and laccase accumulation observed for wild-type hypovirulent strain EP713 and is nonessential for viral RNA replication and virulence attenuation. These results also illustrate the feasibility of engineering infectious viral cDNA for construction of hypovirulent fungal strains with specific phenotypic traits.  相似文献   

4.
Chen B  Geletka LM  Nuss DL 《Journal of virology》2000,74(16):7562-7567
Infectious cDNA clones of mild (CHV1-Euro7) and severe (CHV1-EP713) hypovirus strains responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica were used to construct viable chimeric viruses. Differences in virus-mediated alterations of fungal colony morphology, growth rate, and canker morphology were mapped to a region of open reading frame B extending from nucleotides 2,363 to 9, 904. By swapping domains within this region, it was possible to generate chimeric hypovirus-infected C. parasitica isolates that exhibited a spectrum of defined colony and canker morphologies. Several severe strain traits were observed to be dominant. It was also possible to uncouple the severe strain traits of small canker size and suppression of asexual sporulation. For example, fungal isolates infected with a chimera containing nucleotides 2363 through 5310 from CHV1-Euro7 in a CHV1-713 background formed small cankers that were similar in size to that caused by CHV1-EP713-infected isolates but with the capacity for producing asexual spores at levels approaching that observed for fungal isolates infected with the mild strain. These results demonstrate that hypoviruses can be engineered to fine-tune the interaction between a pathogenic fungus and its plant host. The identification of specific hypovirus domains that differentially contribute to canker morphology and sporulation levels also provides considerable utility for continuing efforts to enhance biological control potential by balancing hypovirulence and ecological fitness.  相似文献   

5.
Virulence-attenuating hypoviruses of the species Cryphonectria hypovirus 1 (CHV1) encode a papain-like protease, p29, that shares similarities with the potyvirus-encoded suppressor of RNA silencing HC-Pro. We now report that hypovirus CHV1-EP713-encoded p29 can suppress RNA silencing in the natural host, the chestnut blight fungus Cryphonectria parasitica. Hairpin RNA-triggered silencing was suppressed in C. parasitica strains expressing p29, and transformation of a transgenic green fluorescent protein (GFP)-silenced strain with p29 resulted in an increased number of transformants with elevated GFP expression levels. The CHV1-EP713 p29 protein was also shown to suppress both virus-induced and agroinfiltration-induced RNA silencing and systemic spread of silencing in GFP-expressing transgenic Nicotiana benthamiana line 16c plants. The demonstration that a mycovirus encodes a suppressor of RNA silencing provides circumstantial evidence that RNA silencing in fungi may serve as an antiviral defense mechanism. The observation that a phylogenetically conserved protein of related plant and fungal viruses functions as a suppressor of RNA silencing in both fungi and plants indicates a level of conservation of the mechanisms underlying RNA silencing in these two groups of organisms.  相似文献   

6.
A series of new nociceptin analogues containing cysteine was tested for their nociceptive effects in tail-flick test on mice after icv injection. The cysteines were introduced in order to get irreversibly binding analogues based on the assumption that the cysteines in the ligand can interact with the cysteines from the receptor to form an S-S bridge. In vivo tests revealed that Cys1-nociceptin (1-13)-NH2 (Cys1-NC) is an antagonist, whereas Cys7-NC is an agonist. Gly1[Phe(p-NO2)]4-NC was less active indicating that the antagonist properties of Cys1-NC are associated with the presence of the sulfhydryl group of cysteine. The analogues D-Cys2 and Cys3 were also almost inactive.  相似文献   

7.
8.
In this study we investigated the molecular mechanism by which the Orp1 (Gpx3) protein in Saccharomyces cerevisiae senses and reacts with hydrogen peroxide. Upon exposure to H(2)O(2) Orp1(Cys36) forms a disulfide-bonded complex with the C-terminal domain of the Yap1 protein (Yap1-cCRD). We used 4-nitrobenzo-2-oxa-1,3-diazole to identify a cysteine sulfenic acid (Cys-SOH) modification that forms on Cys(36) of Orp1(Cys36) upon exposure to H(2)O(2). Under similar conditions, neither Cys(82) of Orp1(Cys82) nor Cys(598) of Yap1 forms Cys-SOH. A homology-based molecular model of Orp1 suggests that the structure of the active site of Orp1 is similar to that found in mammalian selenocysteine glutathione peroxidases. Proposed active site residues Gln(70) and Trp(125) form a catalytic triad with Cys(36) in the Orp1 molecular model. The remainder of the active site pocket is formed by Phe(38), Asn(126), and Phe(127), which are evolutionarily conserved residues. We made Q70A and W125A mutants and tested the ability of these mutants to form Cys-SOH in response to H(2)O(2). Both mutants were unable to form Cys-SOH and did not form a H(2)O(2)-inducible disulfide-bonded complex with Yap1-cCRD. The pK(a) of Cys(36) was determined to be 5.1, which is 3.2 pH units lower than that of a free cysteine (8.3). In contrast, Orp1 Cys(82) (the resolving cysteine) has a pK(a) value of 8.3. The pK(a) of Cys(36) in the Q70A and W125A mutants is also 8.3, demonstrating the importance of these residues in modulating the nucleophilic character of Cys(36). Finally, we show that S. cerevisiae strains with ORP1 Q70A and W125A mutations are less tolerant to H(2)O(2) than those containing wild-type ORP1. The results of our study suggest that attempts to identify novel redox-regulated proteins and signal transduction pathways should focus on characterization of low pK(a) cysteines.  相似文献   

9.
Two analogs of human beta-endorphin (beta-EP) which contain cystine bridges, [Cys15-Cys26,Phe27,Gly31]-beta-EP (I) and [Cys16-Cys26,Phe27,Gly31]-beta-EP (II), were synthesized by the solid-phase method. Peptides I and II were shown to contain 2-2.5 times the opiate receptor binding activity of beta-endorphin. We also synthesized two analogs with reduced alkylated cysteine residues and these peptides, [Arg9,19,24,28,29 Cys(Cam)11,26,Phe27,Gly31] and [Arg9,19,24,28,29,Cys-(Cam)12,26,Phe27,Gly31], were shown to have approximately the same opiate receptor activity as beta-endorphin.  相似文献   

10.
The protein‐coding region of melanocortin 1 receptor (MC1R) was sequenced to identify potential variation affecting coat color in reindeer (Rangifer tarandus). A T→C sequence variation at nucleotide position 218 (c.218T>C) causing an amino acid (aa) change from methionine to threonine at aa position 73 (p.Met73Thr) was identified. In addition, a T→G sequence variation was found at nucleotide position 839 (c.839T>G), causing phenylalanine to be exchanged by cysteine at aa position 280 (p.Phe280Cys). The two sequence variants (c.218C and c.839G) were found to be closely associated with a darker belly coat compared with animals not having any of these two variants. The aa acid change p.Met73Thr affects the same position as p.Met73Lys previously reported to give constitutive activation of MC1R in black sheep (Ovis aries), whereas p.Phe280Cys is identical to one of two variants previously reported to be associated with dark coat color in Arctic fox (Alopex lagopus), supporting that the two variants found in reindeer are functional. The complete absence of Thr73 and Cys280 among the 51 wild reindeer analyzed provides some evidence that these variants are more common in the domestic herds.  相似文献   

11.
Chen S  Lin F  Xu M  Riek RP  Novotny J  Graham RM 《Biochemistry》2002,41(19):6045-6053
We showed previously that Phe(303) in transmembrane segment (TM) VI of the alpha(1B)-adrenergic receptor (alpha(1B)-AR), a residue conserved in many G protein-coupled receptors (GPCRs), is critically involved in coupling agonist binding with TM helical movement and G protein activation. Here the equivalent residue, Phe(282), in the beta(2)-AR was evaluated by mutation to glycine, asparagine, alanine, or leucine. Except for F282N, which exhibits attenuated basal and maximal isoproterenol stimulation, the Phe(282) mutants display varying degrees of constitutive activity (F282L > F282A > F282G), and as shown by the results of substituted cysteine accessibility method (SCAM) studies, induce movement of endogenous cysteine(s) into the water-accessible ligand-binding pocket. For F282A, movement is confined to Cys(285) in TMVI, whereas F282L induces movement of both Cys(285) in TMVI and Cys(327) in TMVII. Further, engineered cysteine-sensor studies indicate that F282L causes movement of TMVI, both above and below an apparent kink-inducing TMVI proline (Pro(288)), whereas that due to F282A is confined to the domain below Pro(288). A plausible interpretation of these data is that receptor activation involves rigid body movement of TMVI which, because of its Pro(288)-induced kink, acts as a pivot to transduce and amplify the agonist-induced conformational change in the upper domain, to a change in the lower domain required for productive receptor-G protein coupling.  相似文献   

12.
The prototype hypovirus CHV1-EP713 causes virulence attenuation and severe suppression of asexual sporulation and pigmentation in its host, the chestnut blight fungus, Cryphonectria parasitica. We identified a factor associated with symptom induction in C. parasitica using a transformation of C. parasitica strain EP155 with a full-length cDNA clone from a mild mutant virus strain, Cys(72). This was accomplished by using mutagenesis of the transformant fungal strain TCys(72)-1 by random integration of plasmid pHygR, conferring hygromycin resistance. The mutant, namA (after nami-gata, meaning wave shaped), showed an irregular fungal morphology with reduced conidiation and pigmentation while retaining similar levels of virulence and virus accumulation relative to TCys(72)-1- or Cys(72)-infected strain EP155. However, the colony morphology of virus-cured namA (VC-namA) was indistinguishable from those of EP155 and virus-cured TCys(72)-1 [VC-TCys(72)-1]. The phenotypic difference between VC-namA and VC-TCys(72)-1 was found only when these strains infected with the wild type or certain mutant CHV1-EP713 strains but not when infected with Mycoreovirus 1. Sequence analysis of inverse-PCR-amplified genomic DNA fragments and cDNA identified the insertion site of the mutagenic plasmid in exon 8 of the nam-1 gene. NAM-1, comprising 1,257 amino acids, shows sequence similarities to counterparts from other filamentous fungi and possesses the CorA domain that is conserved in a class of Mg(2+) transporters from prokaryotes and eukaryotes. Complementation assays using the wild-type and mutant alleles and targeted disruption of nam-1 showed that nam-1 with an extension of the pHygR-derived sequence contributed to the altered phenotype in the namA mutant. The molecular mechanism underlying virus-specific fungal symptom modulation in VC-namA is discussed.  相似文献   

13.
N-terminal His-tagged recombinant beta-1,4-galactosyltransferase from Neisseria meningitidis was expressed and purified to homogeneity by column chromatography using Ni-NTA resin. Mutations were introduced to investigate the roles of, Ser68, His69, Glu88, Asp90, and Tyr156, which are components of a highly conserved region in recombinant beta-1,4 galactosyltransferase. Also, the functions of three other cysteine residues, Cys65, Cys139, and Cys205, were investigated using site-directed mutagenesis to determine the location of the disulfide bond and the role of the sulfhydryl groups. Purified mutant galactosyltransferases, His69Phe, Glu88Gln and Asp90Asn completely shut down wild-type galactosyltransferase activity (1-3 %). Also, Ser68Ala showed much lower activity than wild-type galactosyltransferase (19 %). However, only the substitution of Tyr156Phe resulted in a slight reduction in galactosyltransferase activity (90 %). The enzyme was found to remain active when the cysteine residues at positions 139 and 205 were replaced separately with serine. However, enzyme reactivity was found to be markedly reduced when Cys65 was replaced with serine (27 %). These results indicate that conserved amino acids such as Cys65, Ser68, His69, Glu88, and Asp90 may be involved in the binding of substrates or in the catalysis of the galactosyltransferase reaction.  相似文献   

14.
The bacterial 2-nitroreductase NbaA is the primary enzyme initiating the degradation of 2-nitrobenzoate (2-NBA), and its activity is controlled by posttranslational modifications. To date, the structure of NbaA remains to be elucidated. In this study, the crystal structure of a Cys194Ala NbaA mutant was determined to a 1.7-Å resolution. The substrate analog 2-NBA methyl ester was used to decipher the substrate binding site by inhibition of the wild-type NbaA protein. Tandem mass spectrometry showed that 2-NBA methyl ester produced a 2-NBA ester bond at the Tyr193 residue in the wild-type NbaA but not residues in the Tyr193Phe mutant. Moreover, covalent binding of the 2-NBA methyl ester to Tyr193 reduced the reactivity of the Cys194 residue on the peptide link. The Tyr193 hydroxyl group was shown to be essential for enzyme catalysis, as a Tyr193Phe mutant resulted in fast dissociation of flavin mononucleotide (FMN) from the protein with the reduced reactivity of Cys194. FMN binding to NbaA varied with solution NaCl concentration, which was related to the catalytic activity but not to cysteine reactivity. These observations suggest that the Cys194 reactivity is negatively affected by a posttranslational modification of the adjacent Tyr193 residue, which interacts with FMN and the substrate in the NbaA catalytic site.  相似文献   

15.
Arsenic (As) biomethylation is an important component of the As biogeochemical cycle that can influence As toxicity and mobility in the environment. Biomethylation of As is catalyzed by the enzyme arsenite (As[III]) S‐adenosylmethionine methyltransferase (ArsM). To date, all identified ArsM orthologs with As(III) methylation activities have four conserved cysteine residues, which are thought to be essential for As(III) methylation. Here, we isolated an As(III)‐methylating bacterium, Bacillus sp. CX‐1, and identified a gene encoding a S‐adenosylmethionine methyltranserase termed BlArsM with low sequence similarities (≤ 39%) to other ArsMs. BlArsM has six cysteine residues (Cys10, Cys11, Cys145, Cys193, Cys195 and Cys268), three of which (Cys10, Cys145 and Cys195) align with conserved cysteine residues found in most ArsMs. BlarsM is constitutively expressed in Bacillus sp. CX‐1. Heterologous expression of BlarsM conferred As(III) resistance. Purified BlArsM methylated both As(III) and methylarsenite (MAs[III]), with a final product of dimethylarsenate (DMAs[V]). When all six cysteines were individually altered to serine residues, only C145S and C195S derivatives lost the ability to methylate As(III) and MAs(III). The derivative C10S/C11S/C193S/C268S was still active. These results suggest that BlArsM is a novel As(III) S‐adenosylmethionine methyltransferase requiring only two conserved cysteine residues. A model of As(III) methylation by BlArsM is proposed.  相似文献   

16.
为了研究小儿肾小球病变时体内游离氨基酸的代谢变化,采用丹酰氯聚酰胺薄层分析法研究了原发性肾病综合症(INS)8例、急性肾小球肾炎(AGN)12例、过敏性紫癜肾炎(APN)7例与正常对照组29例的血清及红细胞内游离氨基酸含量的变化。结果表明:(1)此三种肾小球疾病,血清中苯丙氨酸(Phe)、脯氨酸(Pro)、色氨酸(Tap)、赖氨酸(Lys)、甘氨酸(Gly)明显高于正常,导致酪/苯丙(Tyr/Phe)、缬/甘(Val/Gly)等分子比降低,提示肾功能受损。(2)血清支链氨基酸(BCAA)的含量在INS中低于正常组(t=3.48;P<0.01),而在AGN、APN中却高于正常组(t分别为2.33,2.39,P<0.05)。(3)红细胞中丝氨酸(Sre)、苯丙氨酸(Phe)、色氨酸(Trp)、胱氨酸+半胱氨酸(Cys)、天冬氨酸(Asp)、谷氨酸(Glu)的含量APN组高于INS及AGN,提示APN患儿中肾功能损害没有INS及AGN严重。  相似文献   

17.
The human δ opioid receptor (hδOR) is a G-protein-coupled receptor that is mainly involved in the modulation of pain and mood. Only one nonsynonymous single nucleotide polymorphism (T80G) has been described, causing Phe27Cys substitution in the receptor N-terminus and showing association with substance dependence. In this study, we expressed the two hδOR variants in a heterologous expression system with an identical genetic background. They differed greatly during early steps of biosynthesis, displaying a significant difference in the maturation efficiency (50% and 85% for the Cys27 and Phe27 variants, respectively). The Cys27 variant also showed accumulation in pre-Golgi compartments of the secretory pathway and impaired targeting to endoplasmic reticulum (ER)-associated degradation following long-term expression. In addition, the cell surface receptors of the Cys27 variant internalized constitutively. Replacement of phenylalanine with other amino acids revealed that cysteine at position 27 decreased the mature receptor/precursor ratio most extensively, suggesting a thiol-mediated retention of precursors in the ER. However, cysteine did not cause a major folding defect because pharmacological characteristics and the maturation kinetics of the variants were identical, and an opioid antagonist was able to enhance the maturation of both variants. We conclude that, instead of causing loss of function, Phe27Cys polymorphism of the hδOR causes a gain-of-function phenotype, which may have implications for the regulation of receptor expression at the cell surface and possibly also for the susceptibility to pathophysiological states.  相似文献   

18.
Human placental ribonuclease inhibitor (hRI) is an acidic protein of Mr∼50kDa with unusually high contents of leucine and cysteine residues. It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease. hRI has 32 cysteine residues, and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence. In the present aork, two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis. The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation. After colony screening, the bacterium was cultured and the product was purified with affinity chromatography. The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect. Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI. But the capacity of anti-oxidative effect increased by 7∼9 times. The enhancement in anti-oxidative effect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained. __________ Translated from HEREDITAS, 2005, 27(2) [译自: 遗传,2005,27(2)]  相似文献   

19.
The helper-component proteinase (HC-Pro) of potyvirus is involved in polyprotein processing, aphid transmission, and suppression of antiviral RNA silencing. There is no high resolution structure reported for any part of HC-Pro, hindering mechanistic understanding of its multiple functions. We have determined the crystal structure of the cysteine protease domain of HC-Pro from turnip mosaic virus at 2.0 Å resolution. As a protease, HC-Pro only cleaves a Gly-Gly dipeptide at its own C terminus. The structure represents a postcleavage state in which the cleaved C terminus remains tightly bound at the active site cleft to prevent trans activity. The structure adopts a compact α/β-fold, which differs from papain-like cysteine proteases and shows weak similarity to nsP2 protease from Venezuelan equine encephalitis alphavirus. Nevertheless, the catalytic cysteine and histidine residues constitute an active site that is highly similar to these in papain-like and nsP2 proteases. HC-Pro recognizes a consensus sequence YXVGG around the cleavage site between the two glycine residues. The structure delineates the sequence specificity at sites P1–P4. Structural modeling and covariation analysis across the Potyviridae family suggest a tryptophan residue accounting for the glycine specificity at site P1′. Moreover, a surface of the protease domain is conserved in potyvirus but not in other genera of the Potyviridae family, likely due to extra functional constrain. The structure provides insight into the catalysis mechanism, cis-acting mode, cleavage site specificity, and other functions of the HC-Pro protease domain.  相似文献   

20.
The pheromone response in the yeast Saccharomyces cerevisiae is mediated by a heterotrimeric G protein. The Gbetagamma subunit (a complex of Ste4p and Ste18p) is associated with both internal and plasma membranes, and a portion is not stably associated with either membrane fraction. Like Ras, Ste18p contains a farnesyl-directing CaaX box motif (C-terminal residues 107 to 110) and a cysteine residue (Cys 106) that is a potential site for palmitoylation. Mutant Ste18p containing serine at position 106 (mutation ste18-C106S) migrated more rapidly than wild-type Ste18p during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The electrophoretic mobility of wild-type Ste18p (but not the mutant Ste18p) was sensitive to hydroxylamine treatment, consistent with palmitoyl modification at Cys 106. Furthermore, immunoprecipitation of the Gbetagamma complex from cells cultured in the presence of [(3)H]palmitic acid resulted in two radioactive species on nonreducing SDS-PAGE gels, with molecular weights corresponding to Ggamma and Gbetagamma. Substitution of serine for either Cys 107 or Cys 106 resulted in the failure of Gbetagamma to associate with membranes. The Cys 107 substitution also resulted in reduced steady-state accumulation of Ste18p, suggesting that the stability of Ste18p requires modification at Cys 107. All of the mutant forms of Ste18p formed complexes with Ste4p, as assessed by coimmunoprecipitation. We conclude that tight membrane attachment of the wild-type Gbetagamma depends on palmitoylation at Cys 106 and prenylation at Cys 107 of Ste18p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号