首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rab GTPases are essential for vesicular transport, whereas adenosine triphosphate (ATP) is the most important and versatile of the activated carriers in the cell. But there are little reports to clarify the connection between ATP and Rab GTPases. A cDNA clone (Rab14) from Bombyx mori was expressed in Escherichia coli as a glutathione S-transferase fusion protein and purified. The protein bound to [3H]-GDP and [35S]-GTPγS. Binding of [35S]-GTPγS was inhibited by guanosine diphosphate (GDP), guanosine triphosphate (GTP) and ATP. Rab14 showed GTP- and ATP-hydrolysis activity. The Km value of Rab14 for ATP was lower than that for GTP. Human Rab14 also showed an ATPase activity. Furthermore, bound [3H]-GDP was exchanged efficiently with GTP and ATP. These results suggest that Rab14 is an ATPase as well as GTPase and gives Rab14 an exciting integrative function between cell metabolic status and membrane trafficking.  相似文献   

2.
Pigment mutant C-2A′ of the unicellular green alga Scenedesmus obliquus develops only traces of chlorophyll and has no detectable amount of δ-aminolevulinic acid (ALA) when grown in the dark. In light it develops ALA and in the presence of levulinic acid (LA), a competitive inhibitor of ALA dehydratase, it accumulates 0.18 mmoles of ALA per 10 microliters of packed cell volume per 12 hours. This amount could be increased up to 15 times by feeding precursors and cofactors.

Incubation with [U-14C]glutamate, [1-14C]glutamate, and [2-14C]glycine yielded significantly labeled ALA, whereas [1-14C]glycine did not label the ALA specifically. Thus, two pathways using either glycine/succinyl-coenzyme A or incorporating the whole C-5-skeleton of glutamate into ALA are present in this alga. The efficiency of the glycine/succinyl-coenzyme A pathway seems to be three times higher than that of the glutamate pathway. Incubation with [5-14C]2-ketoglutarate, which can serve both pathways as a precursor, resulted in radioactivity of ALA as high as the sum of both labeling with [1-14C]glutamate and [2-14C]glycine.

Since the newly synthesized chlorophyll was radioactive regardless of labeled substrate employed, both pathways culminate in chlorophyll formation.

  相似文献   

3.
Chopped tissue from developing soybean cotyledons incorporated [1-14C]acetate into palmitate, stearate, oleate, and linoleate, but with germinating cotyledons much less [1-14C]acetate was incorporated and the principal labeled products were palmitate, stearate, and oleate. When supernatant fractions from developing cotyledons were incubated with [1-14C]acetate or [2-14C]malonate the principal labeled products were palmitate and stearate. Supernatant fractions from germinating seed incorporated [2-14C]malonate into palmitate and also into short chain fatty acids including decanoate, laurate, and myristate. Supernatants from developing cotyledons required acyl carrier protein (ACP), ATP, CoA, and reduced pyridine nucleotides for maximal rates of incorporation of either [1-14C]acetate or [2-14C]malonate into palmitate and stearate. The de novo fatty acid synthetase which converts acetyl- and malonyl-ACP's to palmityl ACP was active in supernatant fractions from both young and old developing cotyledons. The elongation system, converting palmityl ACP to stearyl ACP, was more active in supernatants from younger than from older developing cotyledons. In experiments with chopped tissue the elongation system appeared equally active throughout the development process. These results are consistent with the view that the de novo and elongation systems are separate entities and that the elongation system in older cotyledons is less stable to the methods used to prepare supernatant fractions.  相似文献   

4.
Intact grana and stroma membranes (outer membrane absent) and detergent or sonication disrupted thylakoid membranes were treated with the hydrophilic covalent chemical modifiers [35S]diazonium benzene sulfonic acid ([35S]DABS) and [14C]glycine ethylester plus 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate (CDIS). Plastocyanin was purified using column chromatography followed by polyacrylamide gel electrophoresis and the incorporation of [35S]DABS and [14C]glycine ethylester into plastocyanin was determined by slicing the gels and counting the radioactivity in the plastocyanin band. Plastocyanin isolated from thylakoids disrupted prior to chemical modification binds two to four times as much of either modifier than the plastocyanin isolated from intact chloroplasts. This ratio is five to ten times lower than the ratio expected for a component buried behind the permeability barrier of a membrane. The data suggest that plastocyanin is partially exposed at the external surface of the thylakoid membrane rather than being completely buried in, or behind, the lipo-protein membrane.  相似文献   

5.
Precursors of the pyrimidine moiety of thiamine   总被引:13,自引:2,他引:11  
1. A method was devised for obtaining the pyrimidine moiety of thiamine in a pure form after its excretion into the medium by de-repressed washed-cell suspensions of mutants of Salmonella typhimurium LT2. 2. By using amino acid-requiring mutants, this excretion of pyrimidine moiety was shown to be dependent on the presence of both methionine and glycine. 3. In the presence of either [Me-14C]methionine or [G-14C]methionine, methionine-requiring mutants did not incorporate radioactivity into the pyrimidine moiety. 4. In contrast, both [1-14C]glycine and [2-14C]glycine were incorporated into the pyrimidine moiety excreted by glycine-requiring mutants, and this occurred with little or no dilution of specific radioactivity. 5. The possible requirement for methionine as a cofactor and the significance of the incorporation of both carbon atoms of glycine are discussed.  相似文献   

6.
The relative contributions of invertase and sucrose synthase to initial cleavage of phloem-imported sucrose was calculated for sink leaves of soybean (Glycine max L. Merr cv Wye) and sugar beet (Beta vulgaris L. monohybrid). Invertase from yeast hydrolyzed sucrose 4200 times faster than 1′-deoxy-1′-fluorosucrose (FS) while sucrose cleavage by sucrose synthase from developing soybean leaves proceeded only 3.6 times faster than cleavage of FS. [14C]Sucrose and [14C]FS, used as tracers of sucrose, were transported at identical rates to developing leaves through the phloem. The rate of label incorporation into insoluble products varied with leaf age from 3.4 to 8.0 times faster when [14C]sucrose was supplied than when [14C]FS was supplied. The discrimination in metabolism was related to enzymatic discriminations against FS to calculate the relative contributions of invertase and sucrose synthase to sucrose cleavage. In the youngest soybean leaves measured, 4% of final laminar length (FLL), all cleavage was by sucrose synthase. Invertase contribution to sucrose metabolism was 47% by 7.6% FLL, increased to 54% by 11% FLL, then declined to 42% for the remainder of the import phase. In sugar beet sink leaves at 30% FLL invertase contribution to sucrose metabolism was 58%.  相似文献   

7.
Two biosynthetic routes to the heme, chlorophyll, and phycobilin precursor, δ-aminolevulinic acid (ALA) are known: conversion of the intact five-carbon skeleton of glutamate, and ALA synthase-catalyzed condensation of glycine plus succinyl-coenzyme A. The existence and physiological roles of the two pathways in Cyanidium caldarium were assessed in vivo by determining the relative abilities of [2-14C]glycine and [1-14C]glutamate to label protoheme and heme a. Glutamate was incorporated to a much greater extent than glycine into both protoheme and heme a, even in cells that were unable to form chlorophyll and phycobilins. The small incorporation of glycine could be accounted for by transfer of label to intracellular glutamate pools, as determined from amino acid analysis. It thus appears that C. caldarium makes all tetrapyrroles, including mitochondrial hemes, solely from glutamate, and there is no contribution by ALA synthase in this organism.  相似文献   

8.
Yukiko Tokumitsu  Michio UI 《BBA》1973,292(2):310-324
1. A significant amount of 32Pi is incorporated into ADP fraction if mitochondrial phosphorylation is allowed to proceed solely dependent on the endogenous adenine nucleotides even in the absence of uncouplers or inhibitors of oxidative phosphorylation. This formation of [32P]ADP is accompanied by a significant labelling of the GTP fraction as well as by a decrease in mitochondrial AMP.2. A good correlation, highly significant on a statistical basis, is obtained between the incorporation of 32Pi into ADP on the one hand and the oxidation of [1-14C]glutamate to 14CO2 on the other, under a wide variety of conditions of respiration, suggesting that the substrate-level phosphorylation linked to the oxidation of 2-oxoglutarate leads to the phosphorylation of AMP in rat liver mitochondria.3. Since intramitochondrial GTP is not directly labelled by the [32P]ATP added, it is concluded that neither nucleoside diphosphokinase (ATP:nucleoside diphosphate phosphotransferase, EC 2.7.4.6) nor adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3) is functioning in such an EDTA-containing medium as employed in the present study because of lack of the enzymes inside the inner membrane. This not only indicates that ATP never serves as a phosphate donor for the observed phosphorylation of AMP, but also, along with several other lines of evidence, lends strong support to the view that [32P]GTP generated as a result of the substrate-level phosphorylation is a direct precursor of [32P]ADP through the mediation of GTP:AMP phosphotransferase, which has been verified to be located inside the inner membrane by the significant labelling of GTP by [32P]ADP.  相似文献   

9.
The interconversion of glycine and serine by plant tissue extracts   总被引:16,自引:5,他引:11       下载免费PDF全文
1. Extracts prepared from a variety of higher-plant tissues by ammonium sulphate fractionation were shown to catalyse the interconversion of glycine and serine. This interconversion had an absolute requirement for tetrahydrofolate and appeared to favour serine formation. 2. The biosynthesis of serine from glycine was studied in more detail with protein fractionated from 15-day-old wheat leaves. Synthesis of [14C]serine from [14C]glycine was not accompanied by labelling of glyoxylate, glycollate or formate. 3. The synthesis of serine from glycine was stimulated by additions of formaldehyde, and [14C]formaldehyde was readily incorporated into C-3 of serine in the presence of tetrahydrofolate. 4. The results are interpreted as indicating that serine biosynthesis involves a direct cleavage of glycine whereby the α-carbon is transferred via N5N10-methylenetetrahydrofolate to become the β-carbon of serine.  相似文献   

10.
[14C]Formate is incorporated into the C-2 of the pyrimidine moiety of thiamin by Escherichia coli and Salmonella typhimurium. In Saccharomyces cerevisiae, it is incorporated into C-4. Radioactive carbons of [1-14C]glycine and [2-14C]glycine are incorporated by S. typhimurium into the C-4 and C-6 of the pyrimidine, respectively, but not by S. cerevisiae. These facts suggest that procaryotes and eucaryotes have different biosynthetic pathways for pyrimidine. In this study, the procaryotes tested incorporated [14C]formate into the C-2 and the eucaryotes incorporated it into the C-4 of the pyrimidine.  相似文献   

11.
Labeling studies using detached lupin (Lupinus angustifolius) nodules showed that over times of less than 3 minutes, label from [3,4-14C]glucose was incorporated into amino acids, predominantly aspartic acid, to a much greater extent than into organic acids. Only a slight preferential incorporation was observed with [1-14C]- and [6-14C]glucose, while with [U-14C]-glucose more label was incorporated into organic acids than into amino acids at all labeling times. These results are consistent with a scheme whereby the “carbon skeletons” for amino acid synthesis are provided by the phosphoenolpyruvate carboxylase reaction.  相似文献   

12.
Interaction of liver plasma membranes and GTP with GTP hydrolysis   总被引:1,自引:0,他引:1  
[14C]GTP or a metabolic product of GTP binds to liver membranes. Less label was associated with membranes when membranes were incubated with increasing concentrations of carrier GTP; ATP did not displace the label. Chromatography of extracted incubation mixtures of [14C]GTP and membranes revealed that over 96% of the nucleotide was hydrolyzed to 5′GMP and guanosine, Exposure of liver membranes to GTP prevented the separation of characteristic membrane bands that could be obtained when centrifugation was carried out without GTP. These studies indicate that GTP-effected alteration of liver plasma membranes is concomitant with GTP hydrolysis. These effects may be in addition to direct effects of GTP on enzymes and membrane proteins.  相似文献   

13.
A new method has been developed for prelabeling tissue ATP pools with 32P inorganic phosphate (Pi) and for the subsequent isolation of [32P]cAMP and [32P]ATP. The new method of prelabeling eliminates the need to separate trace amounts of radioactive cAMP from radioactive breakdown products of adenine formed in tissues prelabeled with [3H]- or [14C]adenine. The effect of epinephrine to increase [32P]cAMP levels in rat ventral prostate tissue fragments has been studied in terms of increase in the ratio of [32P]cAMP/[32P]ATP in the absence and presence of various phosphodiesterase inhibitors. Tissue prelabeling with 32Pi labels GTP as well as ATP (and other nucleoside triphosphates); thus the method lends itself to the isolation of [32P]cGMP as well as [32P]cAMP from the same tissue sample.  相似文献   

14.
The aim of this work was to discover how leucoplasts from suspension cultures of soybean (Glycine max L.) oxidize hexose monophosphates. Leucoplasts were isolated from protoplast lysates on a continuous gradient of Nycodenz with a yield of 28% and an intactness of 80%. Incubation of the leucoplasts with 14C-labelled substrates led to 14CO2 production, that was dependent upon leucoplast intactness, from [U-14C]glucose 6-phosphate, [U-14C]glucose 1-phosphate, [U-14C] fructose 6-phosphate and [U-14C]glucose+ATP, but not from [U-14C]fructose-1,6-bisphosphate or [U-14C]triose phosphate. The yield from [U-14C]glucose 6-phosphate was at least four times greater than that from any of the other substrates. When [1-14C]-, [2-14C]-, [3,4-14C]-, and [6-14C]glucose 6-phosphate were supplied to leucoplasts significant 14CO2 production that was dependent upon leucoplast intactness was found only for [1-14C]glucose 6-phosphate. It is argued that soybean cell leucoplasts oxidize glucose 6-phosphate via the oxidative pentose phosphate pathway with very little recycling, and that in these plastids glycolysis to acetyl CoA is negligible.S.A.C. thanks the Science and Engineering Research Council for a research studentship.  相似文献   

15.
1. Slices of liver from laying hens incorporated Na214CO3 and NaH232PO4 into phosvitin. Slices of liver from immature birds did not do so to any appreciable extent. The 32P was incorporated into O-phosphorylserine in the phosvitin molecule. 2. Kidney, spleen, muscle, large and small intestine, ovary and oviduct from laying birds did not incorporate Na214CO3 into phosvitin. 3. Slices of liver from laying hens carried out a net synthesis of phosphoprotein under the standard conditions of incubation. Slices from the livers of immature pullets did not do so. 4. Liver from the laying hen incorporated [2-14C]glycine, [3-14C]serine and [2-14C]glutamic acid into phosvitin. Part of the glycine was shown to be present as serine in the final product. 5. Slices of liver from immature birds treated with oestradiol synthesized phosvitin from [2-14C]glycine, but the addition of oestrogens in vitro to slices from untreated immature birds did not promote synthesis during a 3 hr. incubation period.  相似文献   

16.
Fu-Li Yu 《Life sciences》1976,18(10):1171-1175
Isolated rat liver nuclei contain ribohomopolymer polymerases with relative activities in the following order: Poly (A) (100%) > Poly (C) (62%) > Poly (U) (34%) > Poly (G) (13%). Because these enzymes share the same substrates with the nuclear DNA-dependent RNA polymerases in nuclei, labelled precursor is therefore concurrently incorporated into both RNA and ribohomopolymer. Thus, experiments designed to study DNA-dependent RNA synthesis are subjected to error. It is estimated when [14C]ATP is used as the labelled precursor, the error is as high as 35%; [14C]CTP, 20%; [14C]UTP or [14C]GTP, 10%.  相似文献   

17.
Cr(III)GTP is shown to promote assembly of microtubules that are indistinguishable from those assembled using MgGTP. The rate of assembly using Cr(III)GTP is faster than the rate of assembly using MgGTP. The action of Cr(III)GTP is not due to dissociation of GTP from Cr(III)GTP. Microtubules assembled using [8-14C]Cr(III)GTP are shown to bind 0.55 mol of 14C label per mol of tubulin dimer. This is comparable to [8-14C]GTP binding under identical conditions. The distribution of 14C label is shown to be 55% Cr(III)GTP, 30% GDP, and 15% Cr(III)GDP. Microtubules assembled using Cr(III)GTP have marked resistance to calcium depolymerization but are readily depolymerized by exposure to cold. Two possible models for calcium-induced depolymerization are discussed. Neither Cr(III)ATP nor Cr(III)GDP was found to support assembly. Cr(III)ATP was found to inhibit ATP- and UTP-induced assembly but not GTP- or ITP-induced assembly. This is discussed in terms of the nucleoside diphosphokinase postulated to shuttle phosphoryl groups from nucleoside-5′-triphosphates to GDP, thereby supporting assembly indirectly.  相似文献   

18.
Transport of dicarboxylic acids in castor bean mitochondria   总被引:1,自引:1,他引:0       下载免费PDF全文
Mitochondria from castor bean (Ricinus communis cv Hale) endosperm, purified on sucrose gradients, were used to investigate transport of dicarboxylic acids. The isolated mitochondria oxidized malate and succinate with respiratory control ratios greater than 2 and ADP/O ratios of 2.6 and 1.7, respectively. Net accumulation of 14C from [14C]malate or [14C]succinate into the mitochondrial matrix during substrate oxidation was examined by the silicone oil centrifugation technique. In the presence of ATP, there was an appreciable increase in the accumulation of 14C from [14C]malate or [14C]succinate accompanied by an increased oxidation rate of the respective dicarboxylate. The net accumulation of dicarboxylate in the presence of ATP was saturable with apparent Km values of 2 to 2.5 millimolar. The ATP-stimulated accumulation of dicarboxylate was unaffected by oligomycin but inhibited by uncouplers (2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone) and inhibitors of the electron transport chain (antimycin A, KCN). Dicarboxylate accumulation was also inhibited by butylmalonate, benzylmalonate, phenylsuccinate, mersalyl and N-ethylmaleimide. The optimal ATP concentration for stimulation of dicarboxylate accumulation was 1 millimolar. CTP was as effective as ATP in stimulating dicarboxylate accumulation, and other nucleotide triphosphates showed intermediate or no effect on dicarboxylate accumulation. Dicarboxylate accumulation was phosphate dependent but, inasmuch as ATP did not increase phosphate uptake, the ATP stimulation of dicarboxylate accumulation was apparently not due to increased availability of exchangeable phosphate.

The maximum rate of succinate accumulation (14.5 nanomoles per minute per milligram protein) was only a fraction of the measured rate of oxidation (100-200 nanomoles per minute per milligram protein). Efflux of malate from the mitochondria was shown to occur at high rates (150 nanomoles per minute per milligram protein) when succinate was provided, suggesting dicarboxylate exchange. The uptake of [14C]succinate into malate or malonate preloaded mitochondria was therefore determined. In the absence of phosphate, uptake of [14C]succinate into mitochondria preloaded with malate was rapid (27 nanomoles per 15 seconds per milligram protein at 4°C) and inhibited by butylmalonate, benzylmalonate, and phenylsuccinate. Uptake of [14C]succinate into mitochondria preloaded with malonate showed saturation kinetics with an apparent Km of 2.5 millimolar and Vmax of 250 nanomoles per minute per milligram protein at 4°C. The measured rates of dicarboxylate-dicarboxylate exchange in castor bean mitochondria are sufficient to account for the observed rates of substrate oxidation.

  相似文献   

19.
Addition of proline to suspensions of nonpigmented, nonproliferating cells of Serratia marcescens induced biosynthesis of the pigment, prodigiosin. If methionine was included with proline, 4 times as much prodigiosin was formed, although the amount synthesized in the presence of methionine alone was nil. Uniformly 14C-labelled proline and methionine were incorporated into prodigiosin to about 30% the extent of their incorporation into cellular protein. Experiments with [carboxy-14C]-, and [Me-14C] methionine established that isotope from the methyl group was utilized preferentially for biosynthesis of prodigiosin.  相似文献   

20.
The biochemical basis for the ability of the pterocarpan phytoalexin glycinol (3,6a,9-trihydroxypterocarpan) to inhibit the growth of bacteria was examined. Glycinol at bacteriostatic concentrations (e.g. 50 micrograms per milliliter) inhibits the ability of Erwinia carotovora to incorporate [3H]leucine, [3H]thymidine, or [3H]uridine into biopolymers. Exposure of Escherichia coli membrane vesicles to glycinol at 20 micrograms per milliliter results in inhibition of respiration-linked transport of [14C]lactose and [14C]glycine into the vesicles when either d-lactate or succinate is supplied as the energy source. The ability of E. coli membrane vesicles to transport [14C]α-methyl glucoside, a vectorial phosphorylation-mediated process, is also inhibited by glycinol at 20 micrograms per milliliter. Furthermore, exposure of membrane vesicles to glycinol (50 micrograms per milliliter) at 20°C results in the leakage of accumulated [14C]α-methyl glucoside-6-phosphate. The effects of the phytoalexins glyceollin, capsidiol, and coumestrol, and daidzein, a compound structurally related to glycinol but without antibiotic activity, upon the E. coli membrane vesicle respiration-linked transport of [14C]glycine and of [14C]α-methyl glucoside was also examined. Glyceollin and coumestrol (50 micrograms per milliliter), but not daidzein, inhibit both membrane-associated transport processes. These data imply that the antimicrobial activity of glycinol, glyceollin, and coumestrol are due to a general interaction with the bacterial membrane. Capsidiol (50 micrograms per milliliter) inhibits d-lactate-dependent transport of [14C]glycine but not vectorial phosphorylation-mediated transport of [14C]α-methyl glucoside. Thus, capsidiol's mechanism of antimicrobial action seems to differ from that of the other phytoalexins examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号