首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal microflora plays a pivotal role in the development of the innate immune system and is essential in shaping adaptive immunity. Dysbacteriosis of intestinal microflora induces altered immune responses and results in disease susceptibility. Dendritic cells (DCs), the professional antigen‐presenting cells, have gained increasing attention because they connect innate and adaptive immunity. They generate both immunity in response to stimulation by pathogenic bacteria and immune tolerance in the presence of commensal bacteria. However, few studies have examined the effects of intestinal dysbacteriosis on DCs. In this study, changes of DCs in the small intestine of mice under the condition of dysbacteriosis induced by ceftriaxone sodium were investigated. It was found that intragastric administration of ceftriaxone sodium caused severe dysteriosis in mice. Compared with controls, numbers of DCs in mice with dysbacteriosis increased significantly (P = 0.0001). However, the maturity and antigen‐presenting ability of DCs were greatly reduced. In addition, there was a significant difference in secretion of IL‐10 and IL‐12 between DCs from mice with dysbacteriosis and controls. To conclude, ceftriaxone‐induced intestinal dysbacteriosis strongly affected the numbers and functions of DCs. The present data suggest that intestinal microflora plays an important role in inducing and maintaining the functions of DCs and thus is essential for the connection between innate and adaptive immune responses.  相似文献   

2.
Recognition of LPS by TLR4 initiates inflammatory responses inducing potent antimicrobial immunity. However, uncontrolled inflammatory responses can be detrimental. To prevent the development of septic shock during an infection with Gram-negative bacteria, the immune system has developed mechanisms to neutralize LPS by specialized proteins. In this study, we report the recombinant expression and functional characterization of the mouse homolog of human bactericidal/permeability-increasing protein (BPI). Purified recombinant mouse BPI was able to neutralize LPS-mediated activation of macrophages and to block LPS-dependent maturation of dendritic cells. Recombinant mouse BPI neutralized the capacity of Gram-negative bacteria to activate immune cells, but did not influence the stimulatory properties of Gram-positive bacteria. Unlike human BPI, mouse BPI failed to kill or inhibit the growth of Pseudomonas aeruginosa. Together, these data demonstrate that murine BPI is a potent LPS-neutralizing protein that may limit innate immune responses during Gram-negative infections.  相似文献   

3.
Lipopolysaccharide (LPS) is the major molecular component of the outer membrane of Gram-negative bacteria and serves as a physical barrier providing the bacteria protection from its surroundings. LPS is also recognized by the immune system as a marker for the detection of bacterial pathogen invasion, responsible for the development of inflammatory response, and in extreme cases to endotoxic shock. Because of these functions, the interaction of LPS with LPS binding molecules attracts great attention. One example of such molecules are antimicrobial peptides (AMPs). These are large repertoire of gene-encoded peptides produced by living organisms of all types, which serve as part of the innate immunity protecting them from pathogen invasion. AMPs are known to interact with LPS with high affinities. The biophysical properties of AMPs and their mode of interaction with LPS determine their biological function, susceptibility of bacteria to them, as well as the ability of LPS to activate the immune system. This review will discuss recent studies on the molecular mechanisms underlying these interactions, their effects on the resistance of the bacteria to AMPs, as well as their potential to neutralize LPS-induced endotoxic shock.  相似文献   

4.
Lipopolysaccharide (LPS) is the major molecular component of the outer membrane of Gram-negative bacteria and serves as a physical barrier providing the bacteria protection from its surroundings. LPS is also recognized by the immune system as a marker for the detection of bacterial pathogen invasion, responsible for the development of inflammatory response, and in extreme cases to endotoxic shock. Because of these functions, the interaction of LPS with LPS binding molecules attracts great attention. One example of such molecules are antimicrobial peptides (AMPs). These are large repertoire of gene-encoded peptides produced by living organisms of all types, which serve as part of the innate immunity protecting them from pathogen invasion. AMPs are known to interact with LPS with high affinities. The biophysical properties of AMPs and their mode of interaction with LPS determine their biological function, susceptibility of bacteria to them, as well as the ability of LPS to activate the immune system. This review will discuss recent studies on the molecular mechanisms underlying these interactions, their effects on the resistance of the bacteria to AMPs, as well as their potential to neutralize LPS-induced endotoxic shock.  相似文献   

5.
溃疡性结肠炎(Ulcerative colitis,UC)的发病被认为是宿主遗传易感性、黏膜免疫与肠道菌群共同作用的结果。许多临床研究显示,与正常人相比,UC患者存在不同程度的菌群失调。艰难梭菌、致病性大肠埃希菌等致病微生物被怀疑与UC的发病相关,但目前还未找到充分证据证明它们与UC患者肠道炎症间的因果关系。就UC患者肠道菌群分布的研究现状、肠道菌群检测方法及未来研究进展进行了阐述。  相似文献   

6.
Lipopolysaccharide (LPS) antigenic epitopes of natural virulent and isogenic avirulent Francisella tularensis strains and other species of the Francisella genus (F. novicida, F. novicida-like, and F. philomiragia) were studied by dot and immunoblotting. Polyclonal rabbit and human sera to virulent F. tularensis strains and monoclonal antibodies to F. tularensis LPS O-side chain were used for detecting species- and genus-specific LPS epitopes. Typical virulent F. tularensis strains produce two types of S-LPS with different antigenic specificity simultaneously. Antigenic determinants of two LPS types were located in LPS O-polysaccharide but not in the core oligosaccharide. The epitopes of the first LPS type were characterized by species specificity for F. tularensis in contrast to determinants of the second LPS type, which had epitopes common with F. novicida. Cross exhaustion of human and rabbit antitularemic sera by F. tularensis and F. novicida LPS showed that F. novicida LPS molecules contained at least two epitopes--highly specific for F. novicida and common with the second type of F. tularensis LPS. The immune response of rabbits and humans to F. tularensis LPS epitopes was different in principle. Sera from rabbits immunized with vaccine and virulent F. tularensis strains contained antibodies "recognizing" antigenic epitopes of two S-LPS forms of the bacterium: type 1 species-specific (in high titers) and type 2 epitopes common with F. novicida LPS (in low titers). In addition to these, sera from patients with tularemia contain immunoglobulins to species-specific epitopes of F. novicida LPS in high titers. Experiments on avirulent mutants showed that in some cases attenuation of F. tularensis can involve loss of species-specific LPS form, while S-LPS with epitopes common with F. novicida LPS will be retained. The difference in specificity of human and rabbit antitularemic antibodies is due to individual features in the host immune system.  相似文献   

7.
Lipopolysaccharide is an important recognition marker by virtue of which the innate immune system senses and reacts against Gram-negative bacteria invading the LPS susceptible host. This review deals with the factors affecting LPS susceptibility and with the role of the latter in the course and outcome of Salmonella typhimurium infection.  相似文献   

8.
Lipopolysaccharide is an important recognition marker by virtue of which the innate immune system senses and reacts against Gram-negative bacteria invading the LPS susceptible host. This review deals with the factors affecting LPS susceptibility and with the role of the latter in the course and outcome of Salmonella typhimurium infection.  相似文献   

9.
Macrophages play a central role in host immune responses against pathogens by acting as both professional phagocytic cells and as fully competent APCs. We report here that the LPS from the facultative intracellular Gram-negative bacteria Brucella abortus interferes with the MHC class II Ag presentation pathway. LPS inhibits the capacity of macrophages to present hen egg lysozyme (HEL) antigenic peptides to specific CD4(+) T cells but not those of OVA to specific CD8(+) T cells. This defect was neither related to a decrease of MHC class II surface expression nor to a deficient uptake or processing of HEL. In addition, B. abortus LPS did not prevent the formation of SDS-resistant MHC class II complexes induced by HEL peptides. At the cell surface of macrophages, we observed the presence of LPS macrodomains highly enriched in MHC class II molecules, which may be responsible for the significant down-regulation of CD4(+) T cell activation. This phenomenon may account for the avoidance of the immune system by certain bacterial pathogens and may explain the immunosuppression observed in individuals with chronic brucellosis.  相似文献   

10.
The common mucosal immune system (CMIS) is an interconnecting network of immune structures that provides effective immunity to mucosal surfaces. The structures of the mucosal immune system are fully developed in utero by 28 weeks gestation, but in the absence of intrauterine infection, activation does not occur until after birth. Mucosal immune responses occur rapidly in the first weeks of life in response to extensive antigenic exposure. Maturation of the mucosal immune system and establishment of protective immunity varies between individuals but is usually fully developed in the first year of life, irrespective of gestational age at birth. In addition to exposure to pathogenic and commensal bacteria, the major modifier of the developmental patterns in the neonatal period is infant feeding practices. A period of heightened immune responses occurs during the maturation process, particularly between 1 and 6 months, which coincides with the age range during which most cases of sudden infant death syndrome (SIDS) occur. A hyper-immune mucosal response has been a common finding in infants whose death is classified as SIDS, particularly if in association with a prior upper respiratory infection. Inappropriate mucosal immune responses to an otherwise innocuous common antigen and the resulting inflammatory processes have been proposed as factors contributing to SIDS.  相似文献   

11.
Gut microbiota (GM) is a collection of bacteria, fungi, archaea, viruses and protozoa, etc. They inhabit human intestines and play an essential role in human health and disease. Close information exchange between the intestinal microbes and the host performs a vital role in digestion, immune defence, nervous system regulation, especially metabolism, maintaining a delicate balance between itself and the human host. Studies have shown that the composition of GM and its metabolites are firmly related to the occurrence of various diseases. More and more researchers have demonstrated that the intestinal microbiota is a virtual ‘organ’ with endocrine function and the bioactive metabolites produced by it can affect the physiological role of the host. With deepening researches in recent years, clinical data indicated that the GM has a significant effect on the occurrence and development of cardiovascular diseases (CVD). This article systematically elaborated the relationship between metabolites of GM and its effects, the relationship between intestinal dysbacteriosis and cardiovascular risk factors, coronary heart disease, myocardial infarction, heart failure and hypertension and the possible pathogenic mechanisms. Regulating the GM is supposed to be a potential new therapeutic target for CVD.  相似文献   

12.
Lipopolysaccharide (LPS, endotoxin) is a component of Gram-negative bacteria and is the principal indicator to the innate immune systems of higher animals of a Gram-negative bacterial invasion. LPS activates the blood clotting system of the American horseshoe crab, Limulus polyphemus. By stimulating blood cell degranulation, LPS triggers the release of the proteins of the clotting system from the cells, and by activating a protease cascade that converts coagulogen, a soluble zymogen, to coagulin, the structural protein of the clot, LPS triggers the production of the fibrillar coagulin blood clot. Although originally thought to be restricted to the Gram-negative bacteria and the cyanobacteria, LPS, or a very similar molecule, has recently been described from a eukaryotic green alga, Chlorella. Here we show that, like LPS from Gram-negative bacteria, the algal molecule stimulates exocytosis of the Limulus blood cell and the clotting of coagulin. The coagulin clot efficiently entraps the cells of Chlorella in a network of fibrils. Invasion and erosion of the carapace by green algae is an important cause of mortality of Limulus, and it is suggested that the cellular response to aLPS may contribute to defense against this pathogen.  相似文献   

13.
14.
15.
Microbial carbohydrate antigens are targets of the immune systems of hosts. In this context, it is of interest to obtain data that will permit judgment of the degree of heterogeneity, chemical makeup, and localization of the antigenic determinants of the Herbaspirillum surface glycopolymers. A sheep single-chain antibody-fragment phage library (Griffin.1, UK) was used to obtain miniantibodies to the exopolysaccharides (EPS-I and EPS-II), capsular polysaccharides (CPS-I and CPS-II) and lipopolysaccharide (LPS) of Herbaspirillum seropedicae Z78. To infer about the presence or absence of common antigenic determinants in the cell-surface polysaccharides of H. seropedicae Z78, we ran a comparative immunoassay using rabbit polyclonal and phage recombinant antibodies to the surface glycopolymers of H. seropedicae Z78. We isolated and purified the exopolysaccharides (EPS-I and EPS-II), capsular polysaccharides (CPS-I and CPS-II), and lipopolysaccharide (LPS) of Herbaspirillum seropedicae Z78. Using rabbit polyclonal antibodies, we found that these cell-surface polysaccharides were of a complex nature. EPS-I, EPS-II, CPS-I, CPS-II, and LPS contained common antigenic determinants. CPS-I, CPS-II, and LPS also contained individual antigenic determinants composed of rhamnose, N-acetyl-d-glucosamine, and N-acetyl-d-galactosamine—sugars responsible for cross-reactions with miniantibodies. The anti-LPS miniantibodies were more specific for the core region of the LPS, in which rhamnose was the most abundant sugar, than they were specific for its O portion. The miniantibodies we isolated can be useful reagents not only in basic biochemical research but also in clinical diagnostic and therapeutic applications.  相似文献   

16.
17.
The recognition of broadly conserved microorganism components known as pathogen-associated molecular patterns is an essential step in initiating the innate immune response. In the horseshoe crab, stimulation of hemocytes with lipopolysaccharide (LPS) causes the activation of its innate immune response, and Factor C, a serine protease zymogen, plays an important role in this event. Here, we report that Factor C associates with LPS on the hemocyte surface and directly recognizes Gram-negative bacteria. Structure-function analyses reveal that the LPS binding site is present in the N-terminal cysteine-rich (Cys-rich) region of the molecule and that it contains a tripeptide sequence consisting of an aromatic residue flanked by two basic residues that is conserved in other mammalian LPS-recognizing proteins. Moreover, we have demonstrated that the Cys-rich region specifically binds to LPS on Gram-negative bacteria and that mutations in the tripeptide motif abrogate its association with both LPS and Gram-negative bacteria, underscoring the importance of the tripeptide in LPS interaction. Although the innate immune response to LPS in the horseshoe crab is distinct from that of mammals, it appears to rely on structural features that are conserved among LPS-recognizing proteins from diverse species.  相似文献   

18.
Regular interactions between commensal bacteria and the enteric mucosal immune environment are necessary for normal immunity. Alterations of the commensal bacterial communities or mucosal barrier can disrupt immune function. Chronic stress interferes with bacterial community structure (specifically, α-diversity) and the integrity of the intestinal barrier. These interferences can contribute to chronic stress-induced increases in systemic IL-6 and TNF-α. Chronic stress, however, produces many physiological changes that could indirectly influence immune activity. In addition to IL-6 and TNF-α, exposure to acute stressors upregulates a plethora of inflammatory proteins, each having unique synthesis and release mechanisms. We therefore tested the hypothesis that acute stress-induced inflammatory protein responses are dependent on the commensal bacteria, and more specifically, lipopolysaccharide (LPS) shed from Gram-negative intestinal commensal bacteria. We present evidence that both reducing commensal bacteria using antibiotics and neutralizing LPS using endotoxin inhibitor (EI) attenuates increases in some (inflammasome dependent, IL-1 and IL-18), but not all (inflammasome independent, IL-6, IL-10, and MCP-1) inflammatory proteins in the blood of male F344 rats exposed to an acute tail shock stressor. Acute stress did not impact α- or β- diversity measured using 16S rRNA diversity analyses, but selectively reduced the relative abundance of Prevotella. These findings indicate that commensal bacteria contribute to acute stress-induced inflammatory protein responses, and support the presence of LPS-mediated signaling in stress-evoked cytokine and chemokine production. The selectivity of the commensal bacteria in stress-evoked IL-1β and IL-18 responses may implicate the inflammasome in this response.  相似文献   

19.
The presence of a number of conditioned-pathogenic enterobacteria (Klebsiella, Citrobacter, Enterobacter) in patients with intestinal dysbacteriosis, and also their detection in derangement of normal intestinal biocenosis in patients with chronic intestinal disturbances with clinical manifestations of this condition, even in the absence of known bacteriological indications of dysbacteriosis was revealed. Results of investigations led the authors to the conclusion on the participation of a number of conditioned pathogenic enterobacteria in intestinal dysbacteriosis, and permit a suggestion on the necessity of proper assessment of the fact of presence of these bacteria as a possible dysbacteriosis indication.  相似文献   

20.
Intestinal epithelial cells (IEC) have adapted to the presence of commensal bacteria through a state of tolerance that involves a limited response to lipopolysaccharide (LPS). Low or absent expression of two LPS receptor molecules, the myeloid differentiation (MD)-2 receptor, and toll-like receptor (TLR)4 was suggested to underlie LPS tolerance in IEC. In the present study we performed transfections of TLR4 and MD-2 alone or combined in different IEC lines derived from intestinal cancer (Caco-2, HT-29, and SW837). We found that LPS responsiveness increased more than 100-fold when IEC were transfected with MD-2 alone, but not TLR4. The release of interleukin (IL)-8, but also the expression of cyclooxygenase (Cox-)2 and the related secretion of prostaglandin (PG)E2 were coordinately stimulated by LPS in IEC transfected with MD-2 alone. Supernatants collected from MD-2-transfected IEC supported LPS activation of naïve HT-29, providing additional support to the concept that MD-2 alone endows IEC with LPS responsiveness. LPS responsiveness detected at concentrations as low as 110 pg/ml, and maximal values obtained by 10 ng/ml were clearly beyond those evoked by classical stimuli as IL-1β. In polarized cells, apical LPS stimulation was markedly more efficient than basolateral. Our data contradict previous opinion that both TLR4 and MD-2 limit IEC response to LPS, and emphasize the prominent role of MD-2 in intestinal immune responses to Gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号