首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2)) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.  相似文献   

2.
Effects of forced sleep-wake schedules with and without physical exercise were examined on the human circadian pacemaker under dim light conditions. Subjects spent 15 days in an isolation facility separately without knowing the time of day and followed a forced sleep-wake schedule of a 23 h 40-min period for 12 cycles, and physical exercise was imposed twice per waking period for 2 h each with bicycle- or rowing-type ergometers. As a result, plasma melatonin rhythm was significantly phase advanced with physical exercise, whereas it was not changed without exercise. The difference in phase was already significant 6 days after the start of exercise. The amplitude of melatonin rhythm was not affected. A single pulse of physical exercise in the afternoon or at midnight significantly phase delayed the melatonin rhythms when compared with the prepulse phase, but the amount of phase shift was not different from that observed in the sedentary controls. These findings indicate that physical exercise accelerates phase-advance shifts of the human circadian pacemaker associated with the forced sleep-wake schedule.  相似文献   

3.

Background

The phase and amplitude of rhythms in physiology and behavior are generated by circadian oscillators and entrained to the 24-h day by exposure to the light-dark cycle and feedback from the sleep-wake cycle. The extent to which the phase and amplitude of multiple rhythms are similarly affected during altered timing of light exposure and the sleep-wake cycle has not been fully characterized.

Methodology/Principal Findings

We assessed the phase and amplitude of the rhythms of melatonin, core body temperature, cortisol, alertness, performance and sleep after a perturbation of entrainment by a gradual advance of the sleep-wake schedule (10 h in 5 days) and associated light-dark cycle in 14 healthy men. The light-dark cycle consisted either of moderate intensity ‘room’ light (∼90–150 lux) or moderate light supplemented with bright light (∼10,000 lux) for 5 to 8 hours following sleep. After the advance of the sleep-wake schedule in moderate light, no significant advance of the melatonin rhythm was observed whereas, after bright light supplementation the phase advance was 8.1 h (SEM 0.7 h). Individual differences in phase shifts correlated across variables. The amplitude of the melatonin rhythm assessed under constant conditions was reduced after moderate light by 54% (17–94%) and after bright light by 52% (range 12–84%), as compared to the amplitude at baseline in the presence of a sleep-wake cycle. Individual differences in amplitude reduction of the melatonin rhythm correlated with the amplitude of body temperature, cortisol and alertness.

Conclusions/Significance

Alterations in the timing of the sleep-wake cycle and associated bright or moderate light exposure can lead to changes in phase and reduction of circadian amplitude which are consistent across multiple variables but differ between individuals. These data have implications for our understanding of circadian organization and the negative health outcomes associated with shift-work, jet-lag and exposure to artificial light.  相似文献   

4.
Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.  相似文献   

5.
The acute disruption in sleep quality, vigilance levels, and cognitive and athletic performance observed after transmeridian flights is presumed to be the result of a transient misalignment between the endogenous circadian pacemaker and the shifted sleep schedule. Several laboratory and field experiments have demonstrated that exposure to bright artificial light can accelerate circadian entrainment to a shifted sleep-wake schedule. In the present study, the authors investigated whether the schedule of exposure to indoor room light, to which urban dwellers are typically exposed, can substantially affect circadian adaptation to a simulated eastward voyage. We enrolled 15 healthy young men in a laboratory simulation of a Montreal-to-London voyage. Subjects were exposed to 6 h of room light (mean +/- SD: 379+/-10) prior to bedtime (n = 7) or when on a progressively advancing schedule (n = 8) early in the day. The remaining 10 hours of wakefulness were spent in dim light (4+/-1 lux). Circadian assessments, performed via the constant routine procedure, evaluated the phase of the endogenous circadian rhythms of core body temperature and plasma melatonin before and after 1 week on the shifted schedule. At the end of the study, only subjects exposed to room light on the advancing schedule expressed oscillations of the endogenous circadian pacemaker in phase with the new sleep-wake cycle. In this group, a mean advance shift of the nadir of core body temperature of +5:22+/-0:15 h was observed, with parallel shifts in plasma melatonin concentration and subjective alertness. The circadian rhythms of subjects exposed to room light later in the day remained much more adjusted to the departure than to the destination time zone. These results demonstrate that the schedule of exposure to room light can substantially affect circadian adaptation to a shifted sleep-wake schedule.  相似文献   

6.
The circadian timing system has three principal components: (i) entrainment pathways, (ii) pacemakers, and (iii) efferent pathways from the pacemakers that convey the circadian signal to effector systems. The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal mammalian circadian pacemaker and, although we understand the organization of entrainment pathways to the SCN and the pacemaker itself, we know much less about the functional organization of SCN projections mediating control of effector systems. It is unclear, for example, whether specific subsets of SCN projections control specific effector systems. In this study, we analyzed the effects of lesions ablating the paraventricular hypothalamic nucleus (PVH), with variable extension into the subparaventricular zone (SPVZ) and adjacent structures, on nocturnal pineal melatonin production and rhythms in core body temperature (Tb) and rest-activity (R-A). In accordance with prior work, ablation of the PVH abolishes the nocturnal rise in pineal melatonin. Lesions restricted to the PVH do not affect rhythms in Tb and R-A but lesions extending caudally and ventrally into the SPVZ disrupt the R-A rhythm proportionate to the interruption of caudal SCN projections without affecting the rhythm in Tb. We conclude that pacemaker regulation of the circadian rhythms analyzed in this study is mediated by discrete sets of SCN projections: (i) dorsal projections to the PVH control pineal melatonin production; (ii) rostral projections to the anterior hypothalamic/preoptic areas mediate the Tb rhythm; and (iii) caudal projections to the SPVZ and hypothalamic arousal systems located in the posterior and lateral hypothalamic areas control the rhythm in R-A.  相似文献   

7.
B D Goldman 《Steroids》1999,64(9):679-685
Circadian systems in a wide variety of organisms all appear to include three basic components: 1) biological oscillators that maintain a self-sustained circadian periodicity in the absence of environmental time cues; 2) input pathways that convey environmental information, especially light cues, that can entrain the circadian oscillations to local time; and 3) output pathways that drive overt circadian rhythms, such as the rhythms of locomotor activity and a variety of endocrine rhythms. In mammals, the circadian system is employed in the regulation of reproductive physiology and behavior in two very important ways. 1) In some species, there is a strong circadian component in the timing of ovulation and reproductive behavior, ensuring that these events will occur at a time when the animal is most likely to encounter a potential mate. 2) Many mammals exhibit seasonal reproductive rhythms that are largely under photoperiod regulation; in these species, the circadian system and the pineal gland are crucial components of the mechanism that is used to measure day length. The rhythm of pineal melatonin secretion is driven by a neural pathway that includes the circadian oscillator(s) in the suprachiasmatic nuclei. Melatonin is secreted at night in all mammals, and the duration of each nocturnal episode of melatonin secretion is inversely related to day length. The pineal melatonin rhythm appears to serve as an internal signal that represents day length and that is capable of regulating a variety of seasonal variations in physiology and behavior.  相似文献   

8.
A patient who developed an irregular sleep-wake pattern following prolactin-secreting pituitary microadenoma is described. The patient reported difficulties in sleep onset and awakening at the desired time, which caused major dysfunction in his daily life activities. Despite these difficulties, the sleep-related complaints of the patient remained unrecognized for as long as three yrs. Statistical analyses of the patient's rest-activity patterns revealed that the disruption of the sleep-wake circadian rhythm originated from a disharmony between ultradian (semicircadian) and circadian components. The circadian component displayed shorter than 24 h periodicity most of the time, but the semicircadian component fluctuated between longer and shorter than 12 h periods. Additionally, desynchrony in terms of period length was found in the tentative analyses of the rest-activity pattern, salivary melatonin, and oral temperature. While the salivary melatonin time series data could be characterized by a best-fit cosine curve of 24 h, the time series data of oral temperature was more compatible with 28 h best-fit curve. The rest-activity cycle during the simultaneous measurements, however, was best approximated by a best-fit curve of 21 h. The dysregulation of circadian rhythms occurred concomitantly, but not beforehand, with the onset of pituitary disease, thus suggesting an association between the two phenomena. This association may have interesting implications to the modeling of the circadian time-keeping system. This case also highlights the need to raise the awareness to circadian rhythm sleep disorders and to consider disruptions of sleep-wake cycle in patients with pituitary adenoma.  相似文献   

9.
The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.  相似文献   

10.
The human circadian timing system has previously been shown to free run with a period slightly longer than 24 h in subjects living in the laboratory under conditions of forced desynchrony. In forced desynchrony, subjects are shielded from bright light and periodic time cues and are required to live on a day length outside the range of circadian entrainment. The work schedule used for most personnel aboard American submarines is 6 h on duty alternating with 12 h off duty. This imposed 18-h cycle is too short for human circadian synchronization, especially given that there is no bright-light exposure aboard submarines. However, crew members are exposed to 24-h stimuli that could mediate synchronization, such as clocks and social contacts with personnel who are living on a 24-h schedule. The authors investigated circadian rhythms of salivary melatonin in 20 crew members during a prolonged voyage on a Trident nuclear submarine. The authors found that in crew members living on the 18-h duty cycle, the endogenous rhythm of melatonin showed an average period of 24.35 h (n = 12, SD = 0.18 h). These data indicate that social contacts and knowledge of clock time are insufficient for entrainment to a 24-h period in personnel living by an 18-h rest-activity cycle aboard a submarine.  相似文献   

11.
Entrainment of the circadian rhythm has 2 aspects, period and phase adjustments, which are established simultaneously in most nonhuman circadian systems. The human circadian system is unique in its functional structure in which 2 different subsystems are involved; one is the circadian pacemaker analogous to that located in the suprachiasmatic nucleus, and the other is the oscillatory system of unknown nature that drives the rest-activity cycle. The human circadian system shows the endogenous period very close to 24 h under entrainment and less sensitive to photic stimuli than under free running, which may explain stable entrainment in the real word where natural sun lights are unpredictable in terms of the intensity and time of appearance. On the other hand, nonphotic entrainment seems to play a significant role in phase adjustment of the human circadian system. Nonphotic zeitgebers initially directed to the rest-activity cycle may affect the circadian pacemaker through feedback and/or associated LD cycles.  相似文献   

12.
Circadian rhythms possess the ability to robustly entrain to the environmental cycles. This ability relies on the phase synchronization of circadian rhythm gene regulation to different environmental cues, of which light is the most obvious and important. The elucidation of the mechanism of circadian entrainment requires an understanding of circadian phase behavior. This article presents two phase analyses of oscillatory systems for infinitesimal and finite perturbations based on isochrons as a phase metric of a limit cycle. The phase response curve of circadian rhythm can be computed from the results of the analyses. The application to a mechanistic Drosophila circadian rhythm model gives experimentally testable hypotheses for the control mechanisms of circadian phase responses and evidence for the role of phase and period modulations in circadian photic entrainment.  相似文献   

13.
In Drosophila multiple circadian oscillators and behavioral rhythms are known to exist, yet most previous studies that attempted to understand circadian entrainment have focused on the activity/rest rhythm and to some extent the adult emergence rhythm. Egg laying behavior of Drosophila females also follows circadian rhythmicity and has been seen to deviate substantially from the better characterized rhythms in a few aspects. Here we report the findings of our study aimed at evaluating how circadian egg laying rhythm in fruit flies Drosophila melanogaster entrains to time cues provided by light and temperature. Previous studies have shown that activity/rest rhythm of flies entrains readily to light/dark (LD) and temperature cycles (TC). Our present study revealed that egg laying rhythm of a greater percentage of females entrains to TC compared to LD cycles. Therefore, in the specific context of our study this result can be taken to suggest that egg laying clocks of D. melanogaster entrains to TC more readily than LD cycles. However, when TC were presented along with out-of-phase LD cycles, the rhythm displayed two peaks, one occurring close to lights-off and the other near the onset of low temperature phase, indicating that upon entrainment by TC, LD cycles may be able to exert a greater influence on the phase of the rhythm. These results suggest that temperature and light associatively entrain circadian egg laying clocks of Drosophila.  相似文献   

14.
The effects of permanent shift work on entrainment and sleepiness are examined using a mathematical model that combines a model of sleep-wake switch in the brain with a model of the human circadian pacemaker entrained by light and nonphotic inputs. The model is applied to 8-hour permanent shift schedules to understand the basic mechanisms underlying changes of entrainment and sleepiness. Average sleepiness is shown to increase during the first days on the night and evening schedules, that is, shift start times between 0000 to 0700 h and 1500 to 2200 h, respectively. After the initial increase, sleepiness decreases and stabilizes via circadian re-entrainment to the cues provided by the shifts. The increase in sleepiness until entrainment is achieved is strongly correlated with the phase difference between a circadian oscillator entrained to the ambient light and one entrained to the shift schedule. The higher this phase difference, the larger the initial increase in sleepiness. When entrainment is achieved, sleepiness stabilizes and is the same for different shift onsets within the night or evening schedules. The simulations reveal the presence of a critical shift onset around 2300 h that separates schedules, leading to phase advance (night shifts) and phase delay (evening shifts) of the circadian pacemaker. Shifts starting around this time take longest to entrain and are expected to be the worst for long-term sleepiness and well-being of the workers. Surprisingly, we have found that the circadian pacemaker entrains faster to night schedules than to evening ones. This is explained by the longer photoperiod on night schedules compared to evening. In practice, this phenomenon is difficult to see due to days off on which workers switch to free sleep-wake activity. With weekends, the model predicts that entrainment is never achieved on evening and night schedules unless the workers follow the same sleep routine during weekends as during work days. Overall, the model supports experimental observations, providing new insights into the mechanisms and allowing the examination of conditions that are not accessible experimentally.  相似文献   

15.
Melatonin is of great importance to the investigation of human biological rhythms. Its rhythm in plasma or saliva provides the best available measure of the timing of the internal circadian clock. Its major metabolite 6-sulphatoxymelatonin is robust and easily measured in urine. It thus enables long-term monitoring of human rhythms in real-life situations where rhythms may be disturbed, and in clinical situations where invasive procedures are difficult. Melatonin is not only a "hand of the clock"; endogenous melatonin acts to reinforce the functioning of the human circadian system, probably in many ways. Most is known about its relationship to sleep and the decline in core body temperature and alertness at night. Current perspectives also include a possible influence on major disease risk, arising from circadian rhythm disruption. Melatonin clearly has the ability to induce sleepiness and lower core body temperature during "biological day" and to change the timing of human rhythms when treatment is appropriately timed. It can entrain free-running rhythms and maintain entrainment in most blind and some sighted people. Used therapeutically it has proved a successful treatment for circadian rhythm disorder, particularly the non-24-h sleep wake disorder of the blind. Numerous other clinical applications are under investigation. There are, however, areas of controversy, large gaps in knowledge, and insufficient standardization of experimental conditions and analysis for general conclusions to be drawn with regard to most situations. The future holds much promise for melatonin as a therapeutic treatment. Most interesting, however, will be the dissection of its effects on human genes.  相似文献   

16.
Mammalian endogenous circadian rhythms are entrained to the environmental day-night cycle by light exposure. Melatonin is involved in this entrainment by signaling the day-night information to the endogenous circadian pacemaker. Furthermore, melatonin is known to affect the circadian rhythm of body temperature directly. A striking property of the endogenous melatonin signal is its synthesis pattern, characterized by long-term elevated melatonin levels throughout the night. In the present study, the influence of prolonged treatment with the melatonin agonist S20098 during the activity phase of free-running rats was examined. This was achieved by giving S20098 in the food. The free-running body temperature and activity rhythms were studied. The present study shows that enhancement of the melatonin signal, using S20098, affected the free-running rhythm by gradual phase advances of the start of the activity phase, consequently causing an increase in length of the activity phase. A well-known feature of circadian rhythms is its time-dependent sensitivity for light. Light pulse exposure of an animal housed under continuous dark conditions can cause a phase shift of the circadian pacemaker. Therefore, in a second experiment, the influence of melatonin receptor stimulation on the sensitivity of the pacemaker to light was examined by giving the melatonin agonist S20098 in the food during 1 day prior to exposure to a 60-min light pulse of 0, 1.5, 15, or 150 lux given at circadian time (CT) 14. S20098 pretreatment caused a diminished lightpulse- induced phase shift when a light pulse of low light intensity (1.5 lux) was given. S20098 treatment via the food was sufficient to exert chronobiotic activity, and S20098 treatment resulting in prolonged overstimulation of melatonin receptors is able to attenuate the effect of light on the circadian timing system. (Chronobiology International, 18(5), 781-799, 2001)  相似文献   

17.
Biological circadian clocks oscillate with an approximately 24-hour period, are ubiquitous, and presumably confer a selective advantage by anticipating the transitions between day and night. The circadian rhythms of sleep, melatonin secretion and body core temperature are thought to be generated by the suprachiasmatic nucleus of the hypothalamus, the anatomic locus of the mammalian circadian clock. Autosomal semi-dominant mutations in rodents with fast or slow biological clocks (that is, short or long endogenous period lengths; tau) are associated with phase-advanced or delayed sleep-wake rhythms, respectively. These models predict the existence of familial human circadian rhythm variants but none of the human circadian rhythm disorders are known to have a familial tendency. Although a slight 'morning lark' tendency is common, individuals with a large and disabling sleep phase-advance are rare. This disorder, advanced sleep-phase syndrome, is characterized by very early sleep onset and offset; only two cases are reported in young adults. Here we describe three kindreds with a profound phase advance of the sleep-wake, melatonin and temperature rhythms associated with a very short tau. The trait segregates as an autosomal dominant with high penetrance. These kindreds represent a well-characterized familial circadian rhythm variant in humans and provide a unique opportunity for genetic analysis of human circadian physiology.  相似文献   

18.
Mammalian endogenous circadian rhythms are entrained to the environmental day-night cycle by light exposure. Melatonin is involved in this entrainment by signaling the day-night information to the endogenous circadian pacemaker. Furthermore, melatonin is known to affect the circadian rhythm of body temperature directly. A striking property of the endogenous melatonin signal is its synthesis pattern, characterized by long-term elevated melatonin levels throughout the night. In the present study, the influence of prolonged treatment with the melatonin agonist S20098 during the activity phase of free-running rats was examined. This was achieved by giving S20098 in the food. The free-running body temperature and activity rhythms were studied. The present study shows that enhancement of the melatonin signal, using S20098, affected the free-running rhythm by gradual phase advances of the start of the activity phase, consequently causing an increase in length of the activity phase. A well-known feature of circadian rhythms is its time-dependent sensitivity for light. Light pulse exposure of an animal housed under continuous dark conditions can cause a phase shift of the circadian pacemaker. Therefore, in a second experiment, the influence of melatonin receptor stimulation on the sensitivity of the pacemaker to light was examined by giving the melatonin agonist S20098 in the food during 1 day prior to exposure to a 60-min light pulse of 0, 1.5, 15, or 150 lux given at circadian time (CT) 14. S20098 pretreatment caused a diminished lightpulse- induced phase shift when a light pulse of low light intensity (1.5 lux) was given. S20098 treatment via the food was sufficient to exert chronobiotic activity, and S20098 treatment resulting in prolonged overstimulation of melatonin receptors is able to attenuate the effect of light on the circadian timing system. (Chronobiology International, 18(5), 781–799, 2001)  相似文献   

19.
Mammalian circadian organization is believed to derive primarily from circadian oscillators within the hypothalamic suprachiasmatic nuclei (SCN). The SCN drives circadian rhythms of a wide array of functions (e.g., locomotion, body temperature, and several endocrine processes, including the circadian secretion of the pineal hormone melatonin). In contrast to the situation in several species of reptiles and birds, there is an extensive literature reporting little or no effect of pinealectomy on mammalian circadian rhythms. However, recent research has indicated that the SCN and circadian systems of several mammalian species are highly sensitive to exogenous melatonin, raising the possibility that endogenous pineal hormone may provide feedback in the control of overt circadian rhythms. To determine the role of the pineal gland in rat circadian rhythms, the effects of pinealectomy on locomotor rhythms in constant light (LL) and constant darkness (DD) were studied. The results indicated that the circadian rhythms of pinealectomized rats but not sham-operated controls dissociated into multiple ultradian components in LL and recoupled into circadian patterns only after 12-21 days in DD. The data suggest that pineal feedback may modulate sensitivity to light and/or provide coupling among multiple circadian oscillators within the SCN.  相似文献   

20.
The early development of sleep-wake and food-intake rhythms in human infants is reviewed. The development of a 24h day-night rhythm contains two observable developmental processes: the alterations in the periodic structure of behavior (decreased ultradian, increased circadian components) and the process of synchronization to external time (entrainment). The authors present the results of their studies involving 26 German children and compare them with previous investigations. In their research, it became evident that, during the first weeks of life, the time pattern of sleep-wake and food-intake behavior is characterized by different ultradian periodicities, ranging from 2h to 8h. In the course of further ontogenesis, the share of ultradian rhythms in the sleep-wake behavior decreases, while it remains dominant for food-intake behavior. The circadian component is established as early as the first weeks of life and increases in the months that follow. Besides, the authors' study supports the notion of broad interindividual variation in ultradian rhythms and in the development of a day-night rhythm. Examples of free-running rhythms of sleep-wake and food-intake behavior by various authors are strong indicators of the endogenous nature of the circadian rhythms in infants and show that the internal clock is already functioning at birth. It is still uncertain when the process of synchronization to external and social time cues begins and how differences in the maturation of perceptive organs affect the importance of time cues for the entrainment. Prepartally, the physiological maternal entrainment factors and mother-fetus interactions may be most important; during the first weeks of life, the social time cues gain importance, while light acts as a dominant “zeitgeber” at a later time only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号