共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors. 总被引:1,自引:1,他引:1
下载免费PDF全文

Two Saccharomyces cerevisiae kinesin-related motors, Cin8p and Kip1p, perform an essential role in the separation of spindle poles during spindle assembly and a major role in spindle elongation. Cin8p and Kip1p are also required to prevent an inward spindle collapse prior to anaphase. A third kinesin-related motor, Kar3p, may act antagonistically to Cin8p and Kip1p since loss of Kar3p partially suppresses the spindle collapse in cin8 kip1 mutants. We have tested the relationship between Cin8p and Kar3p by overexpressing both motors using the inducible GAL1 promoter. Overexpression of KAR3 results in a shrinkage of spindle size and a temperature-dependent inhibition of the growth of wild-type cells. Excess Kar3p has a stronger inhibitory effect on the growth of cin8 kip1 mutants and can completely block anaphase spindle elongation in these cells. In contrast, overexpression of CIN8 leads to premature spindle elongation in all cells tested. This is the first direct demonstration of antagonistic motors acting on the intact spindle and suggests that spindle length is determined by the relative activity of Kar3p-like and Cin8p/Kip1p-like motors. 相似文献
2.
3.
4.
5.
Mitotic Recombination and Genetic Changes in Saccharomyces cerevisiae during Wine Fermentation 总被引:2,自引:0,他引:2
下载免费PDF全文

Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 × 10−5 to 3 × 10−5 per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker and determined that sporulation was not involved in this process. Thus, we propose a hypothesis for the genome changes in wine yeasts during vinification. This putative mechanism involves mitotic recombination between homologous sequences and does not necessarily imply meiosis. 相似文献
6.
Treatment with an anticancer drug causing mitotic crossing-over could lead to expression of recessive genes, previously masked in a heterozygote. Used clinically, such drugs might cause an increased risk of cancer in cases of familial tumours, such as Wilm's tumour or retinoblastoma. Potentially, novel forms of drug resistance could also be unmasked by such a recombinogenic event. We have estimated the extent of this potential problem in current clinical drugs by comparing a range of antitumour agents for ability to cause mitotic crossing-over in Saccharomyces cerevisiae strain D5. We have compared these data with ability to cause an increase in total aberrant colonies in the same experiments. Although many of the agents known to cause point mutation also have some ability for mitotic crossing-over, there are also point mutagens which have little recombinogenic potential. Conversely, some effective recombinogens appear to be either very specific or rather ineffective point mutagens. Although the most generally effective agents in the present experiments were alkylating agents, several other types of drug including DNA-cutting agents, topoisomerase inhibitors, other DNA-binding drugs and antimetabolites may stimulate mitotic crossing-over. None of the mitotic inhibitors or the DNA minor groove binding drugs tested caused recombinogenic events. It would seem that the ability to induce mitotic crossing-over is an important endpoint in its own right. Assays for this event might provide an important complement to other assays commonly required for registration of new pharmaceuticals. 相似文献
7.
Mutational Analysis of Meiotic and Mitotic Centromere Function in Saccharomyces cerevisiae 总被引:26,自引:4,他引:26
下载免费PDF全文

A centromere (CEN) in Saccharomyces cerevisiae consists of approximately 150 bp of DNA and contains 3 conserved sequence elements: a high A + T region 78-86 bp in length (element II), flanked on the left by a conserved 8-bp element I sequence (PuTCACPuTG), and on the right by a conserved 25-bp element III sequence. We have carried out a structure-function analysis of the element I and II regions of CEN3 by constructing mutations in these sequences and subsequently determining their effect on mitotic and meiotic chromosome segregation. We have also examined the mitotic and meiotic segregation behavior of ARS plasmids containing the structurally altered CEN3 sequences. Replacing the periodic tracts of A residues within element II with random A + T sequences of equal length increases the frequency of mitotic chromosome nondisjunction only 4-fold; whereas, reducing the A + T content of element II while preserving the length results in a 40-fold increase in the frequence of chromosome nondisjunction. Structural alterations in the element II region that do not decrease the overall length have little effect on the meiotic segregation behavior of the altered chromosomes. Centromeres containing a deletion of element I or a portion of element II retain considerable mitotic activity, yet plasmids carrying these same mutations segregate randomly during meiosis I, indicating these sequences to be essential for maintaining attachment of the replicated sister chromatids during the first meiotic division. The presence of an intact element I sequence properly spaced from the element III region is absolutely essential for proper meiotic function of the centromere. 相似文献
8.
Summary Mitotic cells of a diploid strain of Saccharomyces cerevisiae with appropriate markers for the detection of mitotic crossing-over and mitotic gene conversion were irradiated with X-rays. Induction of these recombinational events was strong. After irradiation, cells were incubated in a rich growth medium and samples were removed for studying the possible formation of synaptonemal complexes up to a time when most cells had completed the first post-irradiation cell division. No complexes were found during the entire period of sampling, during which mitotic recombination in G1 (mitotic gene conversion), DNA replication and G2 (mitotic crossing-over) had occurred. These results are interpreted to mean that synaptonemal complexes are not required for mitotic recombination. 相似文献
9.
Phoebe S. Lee Patricia W. Greenwell Margaret Dominska Malgorzata Gawel Monica Hamilton Thomas D. Petes 《PLoS genetics》2009,5(3)
Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle. 相似文献
10.
In Saccharomyces cerevisiae, ASH1 mRNA is transported to the bud tip by the class V myosin Myo4. In vivo, Myo4 moves RNA in a rapid and continuous fashion, but in vitro Myo4 is a nonprocessive, monomeric motor that forms a complex with She3. To understand how nonprocessive motors generate continuous transport, we used a novel purification method to show that Myo4, She3, and the RNA-binding protein She2 are the sole major components of an active ribonucleoprotein transport unit. We demonstrate that a single localization element contains multiple copies of Myo4 and a tetramer of She2, which suggests that She2 may recruit multiple motors to an RNA. Furthermore, we show that increasing the number of Myo4–She3 molecules bound to ASH1 RNA in the absence of She2 increases the efficiency of RNA transport to the bud. Our data suggest that multiple, nonprocessive Myo4 motors can generate continuous transport of mRNA to the bud tip. 相似文献
11.
Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution. 相似文献
12.
High-Voltage Electron Tomography of Spindle Pole Bodies and Early Mitotic Spindles in the Yeast Saccharomyces cerevisiae
下载免费PDF全文

The spindle pole body (SPB) is the major microtubule-organizing center of budding yeast and is the functional equivalent of the centrosome in higher eukaryotic cells. We used fast-frozen, freeze-substituted cells in conjunction with high-voltage electron tomography to study the fine structure of the SPB and the events of early spindle formation. Individual structures were imaged at 5-10 nm resolution in three dimensions, significantly better than can be achieved by serial section electron microscopy. The SPB is organized in distinct but coupled layers, two of which show ordered two-dimensional packing. The SPB central plaque is anchored in the nuclear envelope with hook-like structures. The minus ends of nuclear microtubules (MTs) are capped and are tethered to the SPB inner plaque, whereas the majority of MT plus ends show a distinct flaring. Unbudded cells containing a single SPB retain 16 MTs, enough to attach to each of the expected 16 chromosomes. Their median length is approximately 150 nm. MTs growing from duplicated but not separated SPBs have a median length of approximately 130 nm and interdigitate over the bridge that connects the SPBs. As a bipolar spindle is formed, the median MT length increases to approximately 300 nm and then decreases to approximately 30 nm in late anaphase. Three-dimensional models confirm that there is no conventional metaphase and that anaphase A occurs. These studies complement and extend what is known about the three-dimensional structure of the yeast mitotic spindle and further our understanding of the organization of the SPB in intact cells. 相似文献
13.
Loss of heterozygosity (LOH) at tumor suppressor loci is a major contributor to cancer initiation and progression. Both deletions and mitotic recombination can lead to LOH. Certain chromosomal loci known as common fragile sites are susceptible to DNA lesions under replication stress, and replication stress is prevalent in early stage tumor cells. There is extensive evidence for deletions stimulated by common fragile sites in tumors, but the role of fragile sites in stimulating mitotic recombination that causes LOH is unknown. Here, we have used the yeast model system to study the relationship between fragile site instability and mitotic recombination that results in LOH. A naturally occurring fragile site, FS2, exists on the right arm of yeast chromosome III, and we have analyzed LOH on this chromosome. We report that the frequency of spontaneous mitotic BIR events resulting in LOH on the right arm of yeast chromosome III is higher than expected, and that replication stress by low levels of polymerase alpha increases mitotic recombination 12-fold. Using single-nucleotide polymorphisms between the two chromosome III homologs, we mapped the locations of recombination events and determined that FS2 is a strong hotspot for both mitotic reciprocal crossovers and break-induced replication events under conditions of replication stress. 相似文献
14.
A kinesin-5-dependent 'sliding filament' mechanism is commonly used to actively push apart the poles during mitotic spindle assembly and elongation, but a recent study now shows that, in C. elegans, kinesin-5 is deployed as a brake to slow down spindle-pole separation. 相似文献
15.
Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23–46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae. 相似文献
16.
Budding yeast Cdc14 phosphatase plays essential roles in mitotic exit. Cdc14 is sequestered in the nucleolus by its inhibitor Net1/Cfi1 and is only released from the nucleolus during anaphase to inactivate mitotic CDK. It is believed that the mitotic exit network (MEN) is required for the release of Cdc14 from the nucleolus because liberation of Cdc14 by net1/cfi1 mutations bypasses the essential role of the MEN. But how the MEN residing at the spindle pole body (SPB) controls the association of Cdc14 with Net1/Cfi1 in the nucleolus is not yet understood. We found that Cdc14-5GFP was released from the nucleolus in the MEN mutants (tem1, cdc15, dbf2, and nud1), but not in the cdc5 cells during early anaphase. The Cdc14 liberation from the nucleolus was inhibited by the Mad2 checkpoint and by the Bub2 checkpoint in a different manner when microtubule organization was disrupted. We observed Cdc14-5GFP at the SPB in addition to the nucleolus. The SPB localization of Cdc14 was significantly affected by the MEN mutations and the bub2 mutation. We conclude that Cdc14 is released from the nucleolus at the onset of anaphase in a CDC5-dependent manner and that MEN factors possibly regulate Cdc14 release from the SPB. 相似文献
17.
18.
Mitotic Chromosome Transmission Fidelity Mutants in Saccharomyces Cerevisiae 总被引:28,自引:4,他引:28
下载免费PDF全文

We have isolated 136 independent mutations in haploid yeast strains that exhibit decreased chromosome transmission fidelity in mitosis. Eighty-five percent of the mutations are recessive and 15% are partially dominant. Complementation analysis between MATa and MAT alpha isolates identifies 11 chromosome transmission fidelity (CTF) complementation groups, the largest of which is identical to CHL1. For 49 independent mutations, no corresponding allele has been recovered in the opposite mating type. The initial screen monitored the stability of a centromere-linked color marker on a nonessential yeast chromosome fragment; the mitotic inheritance of natural yeast chromosome III is also affected by the ctf mutations. Of the 136 isolates identified, seven were inviable at 37 degrees and five were inviable at 11 degrees. In all cases tested, these temperature conditional lethalities cosegregated with the chromosome instability phenotype. Five additional complementation groups (ctf12 through ctf16) have been defined by complementation analysis of the mutations causing inviability at 37 degrees. Twenty-three of the 136 isolates exhibited growth defects at concentrations of benomyl permissive for the parent strain, and nine appeared to be tolerant of inhibitory levels of benomyl. All of the mutant strains showed normal sensitivity to ultraviolet and gamma-irradiation. Further characterization of these mutant strains will describe the functions of gene products crucial to the successful execution of processes required for aspects of the chromosome cycle that are important for chromosome transmission fidelity in mitosis. 相似文献
19.
Mitotic chromosome loss induced by methyl benzimidazole-2-yl-carbamate as a rapid mapping method in Saccharomyces cerevisiae. 总被引:4,自引:5,他引:4
J S Wood 《Molecular and cellular biology》1982,2(9):1080-1087
Mitotic chromosome loss induced by methyl benzimidazole-2-yl-carbamate has been utilized as a rapid and simple method for assigning genes to individual chromosomes in Saccharomyces cerevisiae. This technique relied on the segregation of heterozygous markers in a diploid strain after methyl benzimidazole-2-yl-carbamate treatment due to loss of whole chromosomes. Correlations between the expression of an unmapped gene and that of a previously mapped recessive marker indicated chromosomal linkage. Depending on whether the unmapped gene and the marker were located in coupling or in repulsion, either positive or negative correlations were seen. The chromosomal location of several previously mapped genes were confirmed as a test of the method, and one previously unmapped gene, nib1, was mapped. 相似文献
20.
Distance-Independence of Mitotic Intrachromosomal Recombination in Saccharomyces Cerevisiae 总被引:5,自引:5,他引:5
下载免费PDF全文

Many genetic studies have shown that the frequency of homologous recombination depends largely on the distance in which recombination can occur. We have studied the effect of varying the length of duplicated sequences on the frequency of mitotic intrachromosomal recombination in Saccharomyces cerevisiae. We find that the frequency of recombination resulting in the loss of one of the repeats and the intervening sequences reaches a plateau when the repeats are short. In addition, the frequency of recombination to correct a point mutation contained in one of these repeats is not proportional to the size of the duplication but rather depends dramatically on the location of the mutation within the repeated sequences. However, the frequency of mitotic interchromosomal reciprocal recombination is dependent on the distance separating the markers. The difference in the response of intrachromosomal and interchromosomal mitotic recombination to increasing lengths of homology may indicate there are different rate-limiting steps for recombination in these two cases. These findings have important implications for the maintenance and evolution of duplicated sequences. 相似文献