首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estrogen impairs performance on some striatum-sensitive tasks of learning and memory. Evidence indicates that it may have these impairing effects by creating a bias to use hippocampally based strategies to solve tasks whether or not it is advantageous to do so. Estrogen may also exert direct effects in the striatum to affect performance on striatum-mediated procedural memory tasks. In spite of the robust effects that estrogen exerts on nigrostriatal dopaminergic neurons, the role of dopamine in the estrogen-induced effects on procedural memory tasks remains unexplored. The goal of the present study was to assess the independent and interactive effects of estrogen and dopamine antagonists on a striatum-mediated response learning task. Adult rats were ovariectomized and implanted with Silastic capsules containing 25% estradiol diluted in cholesterol or 100% cholesterol. Rats were trained to receive food rewards in an elevated plus maze by making a specified response (right or left turn). Following acquisition, dose-effect curves were determined for the D(1) dopamine receptor antagonist, SCH 23390, and the D(2) dopamine receptor antagonist, eticlopride. Estrogen did not significantly affect acquisition of the task and had no significant effect on the ability of SCH 23390 to disrupt performance on the task. However, estrogen significantly increased the sensitivity of the rats to the error-increasing effects of eticlopride. These results indicate that estrogen may differentially interact with D(1) and D(2) dopamine receptors to affect response learning. They also suggest that in addition to creating a bias to use hippocampally based strategies to solve tasks, estrogen may affect performance on procedural memory tasks through direct action on dopaminergic functioning.  相似文献   

2.
Accumulating evidence suggests a role for estrogen in the use of a particular cognitive strategy when solving a maze task. In order to confirm the role of estrogen in this phenomenon, ovariectomized (OVX) female rats receiving either high ( approximately 90 pg/ml) or low ( approximately 32 pg/ml) circulating levels of 17beta-estradiol benzoate (E2) performed a plus maze task for a reward. Consistent with previous research, OVX rats receiving low levels of E2 utilized a striatum-mediated response strategy while OVX rats administered high levels of E2 employed a hippocampus-mediated place strategy. Furthermore, following a systemic injection of a moderate dose of either a dopamine D1 (SKF 83566, 0.1 mg/kg IP) or D2 (raclopride, 0.5 mg/kg IP) receptor antagonist, low E2 rats were seen to use the opposite strategy and exercise a hippocampus-mediated place strategy in order to obtain the reward. At the same doses, high E2 rats did not change from using a place strategy. At a lower dose, these drugs shifted high E2 rats such that they showed an equal propensity for either strategy; this was not observed in low E2 rats. These results corroborate previous findings that E2 plays a significant role in the use of either a response or place strategy when solving a maze for a reward. In addition, the shift in strategy after dopamine receptor blockade implies the importance of central dopamine function in selecting a cognitive strategy to solve such tasks. It is suggested that estrogen alters cognitive strategy not only by improving hippocampal function, but also by altering dopamine-regulated striatal function.  相似文献   

3.
Adult neurogenesis occurs in the hippocampus of most mammals. While the function of adult hippocampal neurogenesis is not known, there is a relationship between neurogenesis and hippocampus-dependent learning and memory. Ovarian hormones can influence learning and memory and strategy choice. In competitive memory tasks, higher levels of estradiol shift female rats towards the use of the place strategy. Previous studies using a cue-competition paradigm find that 36% of male rats will use a hippocampus-dependent place strategy and place strategy users had lower levels of cell proliferation in the hippocampus. Here, we used the same paradigm to test whether endogenous or exogenous ovarian hormones influence strategy choice in the cue-competition paradigm and whether cell proliferation was related to strategy choice. We tested ovariectomized estradiol-treated (10 μg of estradiol benzoate) or sham-operated female rats on alternating blocks of hippocampus-dependent and hippocampus-independent versions of the Morris water task. Rats were then given a probe session with the platform visible and in a novel location. Preferred strategy was classified as place strategy (hippocampus-dependent) if they swam to the old platform location or cue strategy (hippocampus-independent) if they swam to the visible platform. All groups showed a preference for the cue strategy. However, proestrous rats were more likely to be place strategy users than rats not in proestrus. Female place strategy users had increased cell proliferation in the dentate gyrus compared to cue strategy users. Our study suggests that 78% of female rats chose the cue strategy instead of the place strategy. In summary the present results suggest that estradiol does not shift strategy use in this paradigm and that cell proliferation is related to strategy use with greater cell proliferation seen in place strategy users in female rats.  相似文献   

4.
Spatial navigation is used as a popular animal model of higher cognitive functions in people. The data suggest that the hippocampus is important for both storing spatial memories and for performing spatial computations necessary for navigation. Animals use multiple behavioral strategies to solve spatial tasks often using multiple memory systems. We investigated how inactivation of the rat hippocampus affects performance in a place avoidance task to determine if the role of the hippocampus in this task could be attributed to memory storage/retrieval or to the computations needed for navigation. Injecting tetrodotoxin (TTX) into both hippocampi impaired conditioned place avoidance, but after injecting only one hippocampus, the rats learned the place avoidance as well as without any injections. Retention of the place avoidance learned with one hippocampus was not impaired when the injection was switched to the hippocampus that had not been injected during learning. The result suggests that during learning, the hippocampus did not store the place avoidance memory.  相似文献   

5.
Estrogen has been demonstrated to enhance the use of hippocampal-based place learning while reducing the use of striatal-based motor-response strategy (Korol, D.L., Malin, E.L., Borden, K.A., Busby, R.A., & Couper-Leo, J. (2004). Shifts in preferred learning strategy across the estrous cycle in female rats. Horm. Behav. 45, 330–338). Previous research has focused on task acquisition and the switch from a place to motor-response navigation with training. The current paradigm allowed an examination of the interplay between these two systems by having well-trained animals switch strategies “on demand.” Female and male Sprague–Dawley rats were taught a motor-response task on a plus maze. The rats were then introduced to a place task and taught to switch, by cue, from the motor-response to place strategy. Finally, the rats were trained to continuously alternate between place and motor-responses strategies. The maze configuration allowed for an analysis of cooperative choices (both strategies result in the same goal arm), competitive choices (both strategies result in different goal arms), and single strategy choices (can only use the motor-response strategy). The results indicate that sex and estrogen-related effects on navigation strategy are limited to the initial stages of learning a task. The role of sex and estrogen is diminished once the task is well learned, and presumably, the relative involvement of the hippocampal and striatal systems is established.  相似文献   

6.
Adult female rats with high levels of circulating estradiol are biased to use a place strategy to solve an ambiguous spatial navigation task and those with low levels are biased to use a response strategy. We examined the development of this hormonal modulation of strategy use by training juvenile female rats on an ambiguous navigation task and probing them for strategy use at postnatal day (PD) 16, 21, or 26, after administration of 17 β-estradiol or oil 48 and 24 h prior to testing. We found that rats could use either strategy successfully by PD21 but that estradiol did not bias rats to use a place strategy until PD26. In order to evaluate the stability of this effect over multiple navigation experiences, we retested oil-treated juveniles three times during adulthood. On the first adult navigation experience, rats were significantly more likely to use the same navigation strategy they used as juveniles, regardless of current estrous cycle phase. On the second and third adult tests, after rats had more experience with the task, previous navigation experience did not predict strategy use. Rats in proestrus were significantly more likely to use a place strategy while rats in estrus and diestrus did not appear to have a group bias to use either strategy. These results suggest that estradiol can modulate spatial navigation strategy use before puberty but that this effect interacts with previous navigation experience. This study sheds light on when and under what circumstances estradiol gains control over spatial navigation behavior in the female rat.  相似文献   

7.
The hippocampus and dorsal striatum are important structures involved in place and response learning strategies respectively. Both sex and estrous cycle phase differences in learning strategy preference exist following cue competition paradigms. Furthermore, significant effects of sex and learning strategy on hippocampal neural plasticity have been reported. However, associations between learning strategy and immediate early gene (IEG) expression in the hippocampus and dorsal striatum are not completely understood. In the current study we investigated the effects of sex and estrous cycle phase on strategy choice and IEG expression in the hippocampus and dorsal striatum of rats following cue competition training in the Morris water maze. We found that proestrous rats were more likely to choose a place strategy than non-proestrous or male rats. Although male cue strategy users travelled greater distances than the other groups on the first day of training, there were no other sex or strategy differences in the ability to reach a hidden or a visible platform. Female place strategy users exhibited greater zif268 expression and male place strategy users exhibited greater cFos expression compared to all other groups in CA3. Furthermore, cue strategy users had greater expression of cFos in the dorsal striatum than place strategy users. Shorter distances to reach a visible platform were associated with less activation of cFos in CA3 and CA1 of male place strategy users. Our findings indicate multiple differences in brain activation with sex and strategy use, despite limited behavioral differences between the sexes on this cue competition paradigm.  相似文献   

8.
This article is part of a Special Issue “Estradiol and cognition”.Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings showing that the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions.  相似文献   

9.
Reproductive experiences in females comprise substantial hormonal and experiential changes and can exert long lasting changes in cognitive function, stress physiology, and brain plasticity. The goal of this research was to determine whether prior reproductive experience could alter a prefrontal–cortical dependent form of learning (strategy set shifting) in an operant box. In this study, female Sprague–Dawley rats were mated and mothered once or twice to produce either primiparous or biparous dams, respectively. Age-matched nulliparous controls (reproductively-naïve females with no exposure to pup cues) were also used. Maternal behaviors were also assessed to determine whether these factors would predict cognitive flexibility. For strategy set shifting, rats were trained in a visual-cue discrimination task on the first day and on the following day, were required to switch to a response strategy to obtain a reward. We also investigated a simpler form of behavioral flexibility (reversal learning) in which rats were trained to press a lever on one side of the box the first day, and on the following day, were required to press the opposite lever to obtain a reward. Estrous phase was determined daily after testing. Neither parity nor estrous phase altered total errors or trials to reach criterion in either the set-shifting or reversal-learning tasks, suggesting that PFC-dependent cognitive performance remains largely stable after 1 or 2 reproductive experiences. However, parity and estrous phase interacted to alter the frequency of particular error types, with biparous rats in estrus committing more perseverative but fewer regressive errors during the set-shifting task. This suggests that parity and estrous phase interfere with the ability to disengage from a previously used, but no longer relevant strategy. These data also suggest that parity alters the behavioral sensitivity to ovarian hormones without changing overall performance.  相似文献   

10.
Extinction of conditioned fear has been extensively studied in male rodents. Recently, there have been an increasing number of studies indicating that neural mechanisms for certain behavioral tasks and response behaviors are different in females and males. Using females in research studies can represent a challenge because of the variation of gonadal hormones during their estrous cycle. This protocol describes well-established procedures that are useful in investigating the role of estrogen in fear extinction memory consolidation in female rats. Phase of the estrous cycle and exogenous estrogen administration prior to extinction training can influence extinction recall 24 hr later. The vaginal swabbing technique for estrous phase identification described here aids the examination and manipulation of naturally cycling gonadal hormones. The use of this basic rodent model may further delineate the mechanisms by which estrogen can modulate fear extinction memory in females.  相似文献   

11.
概率类别学习是探讨人们如何习得线索与结果之间的"概率"关系.研究者借助天气预报等任务,探讨了概率类别学习的认知策略、无意识性及其与工作记忆和注意的关系,并借助脑成像技术和脑损伤病人,探讨了基底神经节、内侧颞叶、前额叶和顶叶等脑区在概率类别学习中的作用.但是,由于概率类别学习涉及内隐和外显学习系统的分离问题,目前对其相关研究结果和理论解释还存在很大争议,概率类别学习的认知神经机制仍有待进一步研究.  相似文献   

12.
The paper provides a generalization of data and the results of own experiments on influence ovarian steroids on the hypothalamus and other brain areas related to reproduction. Ovarian hormones have widespread effects throughout the brain: on catecholaminergic neurons and serotonergic pathways and the basal forebrain cholinergic system, as well as the hipocampus, spinal cord, nigrostriatal and mesolimbic system, in addition to glial cells and blood-brain barrier. The widespread influences of these various neuronal systems ovarian steroids have measurable effects on mood and affect as well as on cognition, with implications for dementia. There are developmentally programmed sex differenced in hippocampal structure that may help to explain differences in the strategies which male and female rats use to solve spatial navigation problems. The multiple sites and mechanisms of estrogen action in brain underlie a variety of importants effects on cognitive and other brain functions--coordination of movement, pain, affective state, as well as possible protection in Alzheimer's disease. Estrogen withdrawal after natural or surgical menopause can lead to a host of changes in brain function and behavior.  相似文献   

13.
Advances in magnetic resonance imaging are driving the development of higher-resolution machines equipped with high-strength static magnetic fields (MFs). The behavioral effects of high-strength MFs are largely uncharacterized, although in male rats, exposure to 7 T or above induces locomotor circling and leads to a conditioned taste avoidance (CTA) if paired with a novel taste. Here, the effects of MFs on male and female rats were compared to determine whether there are sex differences in behavioral responses and whether these can be explained by ovarian steroid status. Rats were given 10-min access to a novel saccharin solution and then restrained within a 14-T magnet for 30 min. Locomotor activity after exposure was scored for circling and rearing. CTA extinction was measured with two-bottle preference tests. In experiment 1, males were compared with females across the estrous cycle after a single MF exposure. Females circled more and acquired a more persistent CTA than males; circling was highest on the day of estrus. In experiment 2, the effects of three MF exposures were compared among intact rats, ovariectomized females, and ovariectomized females with steroid replacement. Compared with intact rats, ovariectomy increased circling; estrogen replacement blocked the increase. Males acquired a stronger initial CTA but extinguished faster than intact or ovariectomized females. Thus the locomotor circling induced by MF exposure was increased in females and modulated by ovarian steroids across the estrous cycle and by hormone replacement. Furthermore, female rats acquired a more persistent CTA than male rats, which was not dependent on estrous phase or endogenous ovarian steroids.  相似文献   

14.
The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce α5‐GABAA receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABAAα5‐subunit contents, as occurring in α5(H105R) knock‐in mice, on the memory for location of objects. This required the behavioral characterization of α5(H105R) and wild‐type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of α5‐subunits and retained long‐term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T‐ and eight‐arm mazes. Processing of object, position and context memories and object‐guided response learning were spared. Genotype difference in object‐in‐place memory retrieval and in encoding and response learning strategies for object–location combinations manifested as a bias favoring object‐based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in α5(H105R) mice a behavioral–cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased α5‐subunit contents.  相似文献   

15.
Cognitive function can be affected by the estrous cycle. However, the effect of the estrous cycle on synaptic functions is poorly understood. Here we show that in female rats, inhibitory-avoidance (IA) task (hippocampus-dependent contextual fear-learning task) drives GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) into the hippocampal CA3-CA1 synapses during all periods of the estrous cycle except the proestrous period, when estrogen levels are high. In addition, IA task failed to drive CP-AMPARs into the CA3-CA1 synapses of ovariectomized rats only when estrogen was present. Thus, changes in the stoichiometry of AMPA receptors during learning depend on estrogen levels. Furthermore, the induction of long-term potentiation (LTP) after IA task was prevented during the proestrous period, while intact LTP is still expressed after IA task during other period of the estrous cycle. Consistent with this finding, rats conditioned by IA training failed to acquire hippocampus-dependent Y-maze task during the proestrous period. On the other hand, during other estrous period, rats were able to learn Y-maze task after IA conditioning. These results suggest that high estrogen levels prevent the IA learning-induced delivery of CP-AMPARs into hippocampal CA3-CA1 synapses and limit synaptic plasticity after IA task, thus preventing the acquisition of additional learning.  相似文献   

16.
ABSTRACT

Maternal deprivation at an early age is a powerful stressor that causes permanent alterations in cognitive and behavioral functions during the later stages of life. We investigated the effects of oxytocin on cognitive defects and anxiety disorders caused by acute infantile maternal deprivation in adult rats. We used 18-day-old Wistar albino rats of both sexes. The experimental groups included control (C), maternally deprived (MD), maternally deprived and treated with 0.02 μg/kg oxytocin (MD-0.02 µg/kg oxy), maternally deprived and treated with 2 μg/kg oxytocin (MD-2 µg/kg oxy). When the rats were 60 days old, the open field (OF) and elevated plus maze (EPM) behavioral tests, and the Morris water maze (MWM) test for spatial learning and memory were performed. In addition, the number of neurons in the hippocampus, prefrontal cortex (PFC) and amygdala were determined using quantitative histology. We also measured vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in the PFC. In both sexes, the MD group failed the learning test and the MD-2 μg/kg oxy group failed in the memory test. The MD-0.02 μg/kg oxy group spent more time in the open arm of the EPM device and their locomotor activities were greater in the OF test. The VEGF and BDNF levels in the PFC were higher in the MD-0.02 μg/kg oxy groups than the other maternally deprived groups (oxytocin ±). The number of PFC neurons was low in all male maternally deprived (oxytocin ±) groups, while the number of amygdala neurons was low in both female and male maternally deprived (oxytocin ±) groups. Male rats were more affected by maternal deprivation; administration of oxytocin had dose-dependent biphasic effects on learning, memory and anxiety.  相似文献   

17.
Recent studies suggest the existence of primate-like cognitive abilities in corvids. Although the learning abilities of corvids in comparison to other species have been investigated before, little is known on how corvids perform on simple discrimination tasks if tested in experimental settings comparable to those that have been used for studying complex cognitive abilities. In this study, we tested a captive group of 12 ravens (Corvus corax) on four discrimination problems and their reversals. In contrast to other studies investigating learning abilities, our ravens were not food deprived and participation in experiments was voluntary. This preliminary study showed that all ravens successfully solved feature and position discriminations and several of the ravens could solve new tasks in a few trials, making very few mistakes.  相似文献   

18.
Ovarian steroids have been suggested to aid in preserving cognitive functioning during aging in both humans and other animals. Spatial memory relies heavily on the hippocampus, a structure that is sensitive to the influence of both ovarian hormones and aging. The present study investigated the outcome of ovarian hormone replacement during aging on performance in a spatial version of the Morris water maze. Female rats were ovariectomized at 14 months of age and received one of three types of replacement prior to testing at 16 months: acute estrogen replacement (2 days), chronic estrogen replacement (28 days), or chronic replacement of both estrogen and progesterone (28 days). Control animals, which did not receive replacement hormones, displayed significant overnight forgetting during acquisition of the task. Ovarian hormone replacement, both acute and chronic, prevented forgetting. Previous studies have demonstrated that high levels of ovarian hormones are detrimental to performance of young adult female rats on this task (Warren and Juraska, 1997; Chesler and Juraska, 2000). The current study found an opposite effect during aging: ovarian hormone replacement was beneficial. This suggests that animal models of menopause, aimed at exploring the protective effects of hormone replacement therapy on cognition during human female aging, require the use of aged female animals.  相似文献   

19.
Categorization is a fundamental cognitive function that organizes our experiences into meaningful “chunks.” This category knowledge can then be generalized to novel stimuli and situations. Multiple clinical populations, including people with Parkinson's disease, amnesia, autism, ADHD and schizophrenia, have impairments in the acquisition and use of categories. Although rodent research is well suited for examining the neural mechanisms underlying cognitive functions, many rodent cognitive tasks have limited translational value. To bridge this gap, we use touchscreens to permit greater flexibility in stimulus presentation and task design, track key dependent measures, and minimize experimenter involvement. Touchscreens offer a valuable tool for creating rodent cognitive tasks that are directly comparable to tasks used with humans. Touchscreen tasks are also readily used with cutting-edge neuroscientific methods that are difficult to do in humans such as optogenetics, chemogenetics, neurophysiology and calcium imaging (using miniscopes). In this review, we show advantages of touchscreen-based tasks for studying category learning in rats. We also address multiple factors for consideration when designing category learning tasks, including the limitations of the rodent visual system, experimental design, and analysis strategies.  相似文献   

20.
The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号