首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesterol-Esterifying Enzymes in Developing Rat Brain   总被引:2,自引:2,他引:0  
Abstract: A cholesterol-esterifying enzyme which incorporates exogenous fatty acids into cholesterol esters in the presence of ATP and coenzyme A was demonstrated in 15-day-old rat brain. This enzyme was maximally active at pH 7.4 and distinct from the cholesterol-esterifying enzyme reported earlier (Eto and Suzuki, 1971), which has a pH optimum at 5.2 and does not require cofactors. Properties of the two enzymes have been compared. Both the enzymes showed negligible esterification with acetate and were maximally active with oleic acid. The pH 5.2 enzyme esterified desmosterol, lanosterol and cholesterol at about the same rate, while the pH 7.4 enzyme was only 50% as active with lanosterol as it was with cholesterol and desmosterol. Phosphatidyl serine stimulated the pH 5.2 enzyme but not the pH 7.4 enzyme. Phosphatidyl choline and sodium taurocholate showed no effect on either of the enzymes. Both the enzymes were associated with particulate fractions, but the pH 7.4 enzyme was localized more in the microsomes. Purified myelin showed 2.6-fold and 1.5-fold higher specific activities of pH 5.2 and 7.4 enzymes respectively, when compared with homogenate. About 7–10% of total activity of both the enzymes was associated with purified myelin. Brain stem and spinal cord showed higher specific activity of pH 5.2 enzyme than cerebral cortex and cerebellum, while pH 7.4 enzyme specific activity was higher in cerebellum and brain stem than in cerebral cortex and spinal cord. Microsomal pH 7.4 activity showed progressive increase prior to the active period of myelination, reaching a maximum on the 15th day after birth and declined to 20% of the peak activity by 30 days. In contrast, pH 5.2 enzyme reached maximum activity about the 6th day after birth and remained at this level well into adulthood. In 15-day-old rat brain, pH 7.4 enzyme had five to six times higher specific activity than pH 5.2 enzyme, while in adults the activities were equal. The pH 7.4 enzyme showed a threefold higher specific activity than pH 5.2 enzyme in myelin from 15-day-old rats, but in adults the reverse was true.  相似文献   

2.
Abstract— The chemical composition of four parts of the CNS (cerebrum, cerebellum, brain stem and spinal cord) was determined in 107 pigs at 11 stages of fetal and postnatal development and also in 6 adults. In cerebrum, cerebellum and brain stem, but not in spinal cord, the rate of increase in weight and the rates of change in lipid content slowed down for a period of about 10 days before and after birth. Cholesterol esters and desmosterol were only found in progressively decreasing amounts during the fetal stages of development and together with DNA these were exceptions to the general increases in the tissue concentrations and total amounts of other components during the period studied.
The onset of myelination, as measured by calculated daily increases in tissue contents of cerebroside took place between 70 and 80 days conceptual age and there were two peaks of activity, the first occurring 2 weeks before and the second 3 weeks after birth. Unlike the rate curve for total spinal cord weight the biphasic accumulation of DNA was not synchronous with myelin lipid accretion and the earlier prenatal DNA peak probably denotes proliferation of oligodendrocytes. The two phases of myelination are discussed in relation to an observed generalized pause in development immediately before and after birth.
Fatty acid analysis of cerebrosides indicated that, in spinal cord, chain elongation and desaturation are associated with myelination and continue with increasing activity until maturity. Consequently there was a progressive decrease in the proportion of saturated fatty acids. The fatty acid components of cholesterol esters in the developing pig were shown to be similar to those found during development in the CNS of other species but different from those found in demyelinating conditions.  相似文献   

3.
Abstract— Pentobarbitone sodium anaesthesia was found to produce an increase in protein content in some regions of the rat brain, i.e. posterior cortex, caudate nucleus, and a decrease in protein content in the ventral cortex.
Acetylcholinesterase expressed in terms of wet weight was found to increase in the cerebellum, medulla, and to decrease in the medial cortex, hippocampus, thalamus and caudate nucleus. The changes in activity were not explicable in terms of a direct effect of the anaesthetic on the enzyme. A decrease in protein content of rat brain was observed in the frontal cortex, ventral cortex, hippocampus and caudate nucleus after electrical shocks. Following shock avoidance conditioning procedure (shuttle-box), decreases in protein content were observed in the medial cortex, posterior cortex, cerebellum and ventral cortex; in the thalamus an increase in protein content was observed.
Changes in AChE activity were observed following footshock in the frontal cortex and medulla where there was an increase in activity and in the caudate nucleus, hypothalamus, thalamus, and olfactory tubercle where there was a decrease in activity.
Following shock avoidance conditioning the activity of the AChE increased in posterior cortex, hippocampus, thalamus and hypothalamus and the activity of the enzyme decreased in the ventral cortex.  相似文献   

4.
Changes in the protein levels and activity of Ca2+/Calmodulin dependent protein kinase II (CaM kinase II) level were studied in cytosolic and particulate fractions from cerebral hemisphere, cerebellum, brain stem, thalamus and hypothalamus regions of rat brain after 4 and 12 weeks of induction of diabetes. Streptozotocin induced diabetes, resulted in pronounced increase of CaM kinase II activity as determined by the kinase activity assay. The total amount of enzyme protein (alpha-subunit specific) also showed increase as revealed by western blotting. Parallel studies were also made in age matched control rats and insulin treated diabetic rats. The increase in CaM kinase II activity was more pronounced in the 12 weeks diabetic group. Insulin treatment of diabetic rats, resulted in recovery of enzyme activity near to control values from majority of the brain regions studied. The expression of alpha-subunit specific CaM kinase II correlates with the enzyme activity in the diabetic rat brain.  相似文献   

5.
Abstract— Squalene-2(3)-epoxide-lanosterol cyclase activity has been studied in cell-free extracts of developing rat brain. The enzyme is microsomal and is not stimulated by the addition of 100,000 g supernatant fluid. It is activated by deoxycholate in a manner similar to that of the liver cyclase. It is not inhibited by nicotinamide over a wide range of concentrations but is strongly inhibited by the hypocholesteraemic agent N-dodecylimidazole. Cyclase activity increases from low levels at 5 days of age to maximum activity at 13 days and thereafter slowly declines. The increase in activity is independent of increases in total brain protein and has been analysed by the method of ‘chemical allometry’. Using this technique it can be seen that prior to 13 days the proportion of brain protein allotted to cyclase is increasing whereas after this time it decreases.  相似文献   

6.
Cholesterol for Synthesis of Myelin Is Made Locally, Not Imported into Brain   总被引:12,自引:3,他引:9  
Abstract: We examined whether cholesterol needed for myelin formation is locally synthesized or whether it comes from the circulation. The experimental design was to inject [3H]water and to use incorporation of label into brain cholesterol as a measure of the rate of accumulation of newly synthesized cholesterol in brain. The contribution of the circulation to this labeled cholesterol pool was minimized by repressing liver synthesis of cholesterol with a high cholesterol diet. The rate of accumulation of total cholesterol was calculated from the increasing amounts of sterol in brain regions at successive time intervals during development. Thus, accumulating cholesterol not explained as being newly synthesized (radioactive) could be assumed to have come from the circulation. Long-Evans rats, ranging in age from birth to 35 days, were injected intraperitoneally with [3H]water (0.3–1.0 mCi/g of body weight) and killed 2 h later. The brain was dissected into brainstem, cerebellum, and cerebral hemispheres, and total lipids were extracted. Cholesterol and its precursors were quantified by HPLC. The radioactivity associated with the sterol fractions and the specific activity of body water determined from serum were used to calculate the absolute amount of newly synthesized sterol. The rates of cholesterol synthesis were compared with the rates of accumulation of total cholesterol in each brain region. The rate of accumulation of total sterol (cholesterol and desmosterol) closely followed that of newly synthesized total sterol in all brain regions from the second through the fifth postnatal weeks. Thus, all sterol accumulation in brain during the period of rapid myelination can be explained by local synthesis; neither diet nor production of cholesterol by other organs plays a direct role in supplying cholesterol for myelination in brain.  相似文献   

7.
Branched-chain-amino-acid:alpha-ketoglutarate transaminase and branched-chain alpha-ketoacid dehydrogenase have been assayed in brains of control and of streptozotocin-induced diabetic rats. Enzyme activities were measured in five distinct regions of the brain: cerebellum, pons + medulla, midbrain, thalamus + hypothalamus, and telencephalon. Subcellular distribution of these enzymes in whole brain was assessed by fractionating brain homogenate into cytoplasm, free mitochondria, and synaptosomes. The following enzymes were used as markers: lactate dehydrogenase for cytoplasm, glutamate dehydrogenase for mitochondria, and glutamate decarboxylase for synaptosomes. The activity of the branched-chain amino acid transaminase in all brain regions was considerably higher than that of the branched-chain alpha-ketoacid dehydrogenase. While the highest activity of the transaminase occurred in brain-stem regions, the highest activity of the dehydrogenase was present in cerebellum and telencephalon. Diabetes did not affect the activity of the transaminase, but it caused a decrease in the total activity of the dehydrogenase in midbrain and in thalamus + hypothalamus. The transaminase was localized in the cytoplasmic fraction of whole brain, while the dehydrogenase was enriched in the free mitochondria.  相似文献   

8.
—Glutamic acid decarboxylase was determined in seven brain regions: hypo-thalamus; midbrain; thalamus; corpus striatum; cerebral cortex-hippocampus; medulla-pons; and cerebellum, of suckling rats subjected to Vitamin B6 deficiency for 2 weeks from birth; of adult rats subjected to the deficiency for 5 weeks and of their respective controls. Large regional variations in the enzyme activity were found in brains of both adult and suckling control rats. The activity of the enzyme (assayed without pyridoxal phosphate) and its saturation with endogenous cofactor were markedly reduced in all brain regions of both suckling and adult pyridoxine-deficient rats. The apoenzyme (activity assayed with pyridoxal phosphate), in adult rat brain, showed no change with the deficiency in all regions except in the cerebellum where it increased slightly. In pyridoxine-deficient suckling rat brain, the apoenzyme increased substantially in all regions suggesting a process of enzyme induction. The increase in apoenzyme varied from region to region.  相似文献   

9.
Abstract— Gamma-hydroxybutyric acid is a neuroactive compound which has been found to be a normal constituent of mammalian brain. The present report characterized enzymatic activity in brain forming gamma-hydroxybutyrate (GHB) from succinic semialdehyde (SSA). When NADPH served as cofactor, whole brain homogenate was capable of forming nearly 300 nmol GHB/min/g brain when enzyme activity was measured at 37°C. GHB production was significantly less (50%) when NADH was the cofactor. A regional localization of these activities indicated that the cerebellum and septal area contained the highest capacity to form GHB in the presence of NADPH; intermediate to high activity was found in the cortex, medulla, superior colliculus and corpus striatum; low activity was present in the inferior colliculus, thalamus, pons, hippocampus, substantia nigra and hypothalamus. Activity in the presence of NADH was rather evenly distributed with the exceptions of the cerebellum and inferior colliculus, which contained high and low activity respectively. Both NADPH- and NADH-dependent activities were found primarily in the cytosol. Pentobarbital inhibited enzyme activity and enzyme activity was differentiated from lactic dehydrogenase and alcohol dehydrogenase by use of specific inhibitors. In addition, mixed substrate experiments and kinetic analysis provided evidence for the presence of two reversible NADPH-dependent enzymes capable of producing GHB from SSA.  相似文献   

10.
Stimulation of soluble guanylyl cyclase and increase in cyclic GMP in rat fetal lung fibroblasts (RFL-6 cells) was used as a bioassay to detect EDRF/NO formation. The cytosolic fraction of whole rat brain synthesized an EDRF/NO-like material in a process dependent on L-arginine and NADPH. The enzymatic activity was destroyed by boiling and inhibited by N omega-nitro-L-arginine. Hemoglobin and methylene blue blocked the effect of EDRF/NO. When different brain regions were analyzed in the presence of L-arginine and NADPH, the cytosolic fraction from cerebellum showed the highest EDRF/NO-forming activity (2-3 times higher than whole brain). Activity similar to whole brain was found in hypothalamus and midbrain. Enzymatic activities in striatum, hippocampus and cerebral cortex were about two thirds of whole brain. The lowest activity (less than half of whole brain) was found in the medulla oblongata.  相似文献   

11.
Das A  Dikshit M  Nath C 《Life sciences》2001,68(13):1545-1555
Inhibition of acetylcholinesterase (AChE)-metabolizing enzyme of acetylcholine, is presently the most important therapeutic target for development of cognitive enhancers. However, AChE activity in brain has not been properly evaluated on the basis of age and sex. In the present study, AChE activity was investigated in different brain areas in male and female Sprague-Dawley rats of adult (3 months) and old (18-22 months) age. AChE was assayed spectrophotometrically by modified Ellman's method. Specific activity (micromoles/min/mg of protein) of AChE was assayed in salt soluble (SS) and detergent soluble (DS) fractions of various brain areas, which consists of predominantly G1 and G4 molecular isoforms of AChE respectively. The old male rats showed a decrease (40-55%) in AChE activity in frontal cortex, striatum, hypothalamus and pons in DS fraction and there was no change in SS fraction in comparison to adult rats. In the old female rats the activity was decreased (25-40%) in frontal cortex, cerebral cortex, striatum, thalamus, cerebellum and medulla in DS fraction whereas in SS fraction the activity was decreased only in hypothalamus as compared to adult. On comparing with old male rats, old female rats showed increase in AChE activity in cerebral cortex, hippocampus and hypothalamus of DS fraction and decrease in hypothalamus of SS fraction. There was a significant increase in AChE activity in DS fraction of cerebral cortex, hippocampus, hypothalamus, thalamus and cerebellum in female as compared to male adult rats. However, no significant change in AChE activity was found in the SS fraction, except hypothalamus between these groups. Thus it appears that age alters AChE activity in different brain regions predominantly in DS fraction (G4 isoform) that may vary in male and female. These observations have significant relevance to age related cognitive deficits and its pharmacotherapy.  相似文献   

12.
Postnatal developmental patterns of uridine kinase were determined in crude subcellular fractions of the rat cerebellum, hypothalamus and cerebral cortex at ages 3 through 60 days. The highest specific activity and predominant distribution of enzyme was in the 105,000g supernatant of the 3 brain regions. Enzyme activity in hypothalamus and cerebral cortex was maximum at 3 days and decreased with age; in cerebellum it increased through 13 days and decreased thereafter. Thus, the pattern of activity in hypothalamus and cerebral cortex paralleled changes in DNA and RNA synthesis through age 60 days; in cerebellum, it more closely approximated changes in DNA synthesis during early development. Changes inK m with aging suggest that the brain regions contain more than one form of enzyme. The highest particulate activity was in the microsomal fraction of the cerebellum and hypothalamus at all ages and in the cortex at 35 and 60 days. Relative specific activity for microsomal fractions of the brain regions at 60 days indicate a concentration of the enzyme which may be relevant in the maintenance of RNA activity in adult brain.  相似文献   

13.
Normal rats rotate (turn in circles) at night and in response to drugs (e.g. d-amphetamine) during the day. Rats with known circling biases were injected with [1,2-3H]-deoxy-d-glucose, decapitated and glucose utilization was assessed in several brain structures. Most structures showed evidence of functional brain asymmetry. Asymmetries were of three different kinds: (1) a difference in activity between sides of the brain contralateral and ipsilateral to the direction of rotation (midbrain, striatum); (2) a difference in activity between left and right sides (frontal cortex, hippocampus); and (3) an absolute difference in activity between sides that was correlated to the rate of either rotation (thalamus, hypothalamus) or random movement (cerebellum). Amphetamine, administered 15 minutes before a deoxyglucose injection in other rats, altered some asymmetries (striatum, frontal cortex, hippocampus) but not others (midbrain, thalamus, hypothalamus, cerebellum). Different asymmetries appear to be organized along different dimensions in both the rat and human brains.  相似文献   

14.
Investigations have been carried out on regional and developmental variations in the properties of adenylate cyclase systems in participate preparations from rat brain. EGTA was routinely included in the assay medium to minimize differences in the state of activation of these systems resulting from variations in their exposure to endogenous Ca2+. At birth, adenylate cyclase activity was much higher in the hindbrain-medullary preparations than in comparable fractions from cerebellum, cerebral cortex or subcortex (including midbrain, corpus striatum, hypothalamus and hippocampus). Adenylate cyclase activity increased during early development in preparations from all areas of the brain. Maximal levels were reached at 14 days of age or later. These levels were not greatly altered in the young adult animal, except in the hindbrain-medullary area, where a decrease in activity was observed. Adenylate cyclase systems in cerebral cortical and subcortical preparations were activated by norepinephrine and dopamine throughout development. Serotonin also stimulated adenylate cyclase activity in these preparations from young animals but was much less effective in comparable fractions from adult rats. The response to dopamine was diminished with age in cerebral cortical preparations, but not in subcortical fractions. The responses to norepinephrine increased in both brain regions during early development. Adenylate cyclase systems in particulate preparations from the cerebellum and hindbrain-medullary areas exhibited relatively poor responses to the biogenic amines. Detailed studies of the properties of the cerebral cortical adenylate cyclase systems revealed enhancement of activity by Ca2+ and F? at all stages of development with the maximal activation at 2–3 weeks of age. The results suggest that developmental differences in hormonal sensitivity of adenylate cyclase systems from diverse areas of the brain are related to changes in the proportions of the receptor-enzyme complexes responsive to the different biogenic amines.  相似文献   

15.
Unesterified cholesterol is a major component of plasma membranes. In the brain of the adult, it is mostly found in myelin sheaths, where it plays a major architectural role. In the newborn mouse, little myelination of neurons has occurred, and much of this sterol comprises a metabolically active pool. In the current study, we have accessed this metabolically active pool and, using LC/MS, have identified cholesterol precursors and metabolites. Although desmosterol and 24S-hydroxycholesterol represent the major precursor and metabolite, respectively, other steroids, including the oxysterols 22-oxocholesterol, 22R-hydroxycholesterol, 20R,22R-dihydroxycholesterol, and the C21-neurosteroid progesterone, were identified. 24S,25-epoxycholesterol formed in parallel to cholesterol was also found to be a major sterol in newborn brain. Like 24S- and 22R-hydroxycholesterols, and also desmosterol, 24S,25-epoxycholesterol is a ligand to the liver X receptors, which are expressed in brain. The desmosterol metabolites (24Z),26-, (24E),26-, and 7α-hydroxydesmosterol were identified in brain for the first time  相似文献   

16.
Phospholipase D (PL-D) activity per mg protein of whole homogenate increased 5.1 fold between Embryonic (E) day 17 and Postpartum (P) day 14 and slightly decreased by P 30 days. This was due to the decrease of PL-D activity of the P2 fraction. The PL-D activity of P2 and P3 fractions increased 11.2 and 6.1 fold respectively between E 17 and P 14. The 3 base exchange enzyme (BEE) activities per mg protein of whole homogenate increased up to P 14 or P 21 and then decreased. This decrease was greater in the P2 fraction and the P3 fraction increased after P14. Brains from 1 day to 25 month old rats were dissected into 7 separate regions and both PL-D and BEE activities were measured. In adult rats, the hippocampus and hypothalamus had the highest PL-D activities while medulla+pons and cerebellum had the lowest PL-D activities. The developmental patterns of 5 regions except for hippocampus and hypothalamus were similar. PL-D activity in the hippocampus was maximum at P 7 followed by a steep decrease till P30 suggesting that the PL-D activity of the hypothalamus develops later and that of the hippocampus develops earlier than any other region. The distributions of BEE activities were quite different from those of PL-D activities. In adult rats, the cerebellum had the highest activity while the striatum and medulla+pons had the lowest. The BEE activities of cerebellum were lowest at P 1 and showed steep increase during the next 2 weeks.To whom to address reprint request are to be sent.  相似文献   

17.
2′,3′-Cyclic-nucleotide-3′-phosphodiesterase activity was examined in several regions of rat brain during development, namely optic nerve, olfactory bulb, cerebrum, cerebellum, midbrain, brain stem, and spinal cord. From 4 to 120 days the total activity increased in all regions, although the specific activity approached a constant value in adults. The developmental profile of the enzyme appeared to correlate with the onset of myelination and with the levels of myelin basic protein as well as the appearance of galactocerebroside sulfotransferase. A correlation coefficient of 0.91 was found between total basic protein, expressed as the per cent of the adult (120 day) value, and total enzyme activity over 12–42 days of age (P < 0.001) from six different brain regions as well as for whole brain. By increasing the sensitivity of the assay with the use of [3H-8]adenosine 2′,3′-cyclic monophosphate, we were able to detect activity at birth in both whole brain and spinal cord.  相似文献   

18.
Studies on the reaction kinetics and chromatographic properties of detergent-dispersed adenylate cyclase are described. Detergent-dispersed enzyme was prepared from whole rat cerebellum and from partially purified plasma membranes from rat liver. Data were simulated to fit kinetic models for which an inhibitor is added in constant proportion to the variable substrate. Models were chosen to distinguish whether the adenylate cyclase reaction may be controlled by an inhibitory action of free ATP?4 (or HATP?3) or by a stimulatory action of free divalent cations. The various kinetic models were then tested with the dispersed brain adenylate cyclase with both Mg++ and Mn++ and in two different buffer systems. The experimental data indicate that this enzyme has a distinct cation binding site, but exhibits no significant inhibition by HATP?3 or ATP?4. The detergent-dispersed adenylate cyclase both from liver plasma membranes and from brain have been chromatographed on anion exchange material and have been chromatographed on anion exchange material and have been subjected to gel filtration. The presence of detergent was required for elution of cyclase activity from DEAE-Sephadex but was not required when DEAE-agarose was used. Dispersed brain cyclase was also chromatographed on agarose-NH(CH2)3 NH(CH2)3-NH2 which exhibits both ionic and hydrophobic properties. Fifty percent of the applied activity was recovered with a fivefold increase in specific activity. The data suggest that the relative effectiveness of a given chromatographic procedure for detergent-dispersed adenylate cyclase may reflect the in fluence of both hydrophobic and ionic factors.  相似文献   

19.
Abstract— The reduction of desmosterol by cell-free preparations from developing rat brain was established and the age-dependent alterations in reductase activity were correlated with levels of desmosterol in brain. An increase in enzymic activity followed closely the sharp increase in levels of desmosterol that was observed at about 5 days of age and that reached a maximum at 8-11 days of postnatal age. Furthermore, the abrupt decrease in the desmosterol content of brain at 13-15 days of age was associated with a decrease in enzymic activity. We suggest that the enzyme may be substrate-induced and that this attribute may be of significance with respect to the ontogenesis of myelin. Cerebral desmosterol reductase exhibited a specific requirement for NADPH and was primarily a particulate enzyme.  相似文献   

20.
The activity of 5-aminolaevulinate synthase, the rate-limiting enzyme of haem biosynthesis, is differentially distributed in various regions of the rat brain. The cerebellum possessed the highest enzyme activity of the eight regions studied. The cerebral cortex and the midbrain also exhibited high 5-aminolaevulinate synthase activity; the septum, hypothalamus, thalamus, amygdala and the hippocampus possessed much lower enzyme activity. However, the total porphyrin and haem contents of the different brain segments did not vary greatly. Mn2+, when administered subcutaneously to rats, effectively inhibited the activity of 5-aminolaevulinate synthase in the cerebellum, midbrain and cerebral cortex; however, repeated injections of the metal ion neither decreased the haem and porphyrin contents of the brain nor induced haem oxygenase activity. Mn2+ was not an effective inhibitor of 5-aminolaevulinate synthase activity in vitro. On the other hand, studies carried out with the liver in vivo suggested that Mn2+ may alter the turnover rate of cellular haem and haemoproteins. In that event, it is likely that the inhibition of 5-aminolaevulinate synthase by Mn2+ was in part a result of the inhibition of protein synthesis by the metal ion. It is postulated that the haem and porphyrin contents of the brain are maintained at a steady-state level, due in part to the refractoriness to inducers of the regulatory mechanism for haem catabolic enzymes and in part to the ability of the organ to utilize haem precursors derived from extraneuronal sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号